期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于DMN的跨模态目标实例分割方法
1
作者
熊珺瑶
宋振峰
王蓉
《计算机工程与应用》
CSCD
北大核心
2022年第20期117-123,共7页
在DMN的基础上提出一种跨模态目标实例分割方法,旨在结合自然语言表达,利用不同模态信息从图像中分割所描述对象。在视觉特征提取网络DPN92中引入CBAM注意力机制,关注空间和通道上的有用信息;将BN层替换为联合BN和FRN的正则化,减少批次...
在DMN的基础上提出一种跨模态目标实例分割方法,旨在结合自然语言表达,利用不同模态信息从图像中分割所描述对象。在视觉特征提取网络DPN92中引入CBAM注意力机制,关注空间和通道上的有用信息;将BN层替换为联合BN和FRN的正则化,减少批次量和通道数对提取特征网络性能的影响,提高网络的泛化能力;在三个通用数据集ReferIt、GRef和UNC上进行仿真实验。实验结果显示,提出的引入CBAM注意力机制和联合正则化改进模型在mIou评价指标上,ReferIt和GRef上分别提升了1.85和0.52个百分点,在UNC三个验证集上分别提升了1.98、2.22和2.75个百分点。表明改进模型在预测准确度方面优于已有模型。
展开更多
关键词
跨模态
自然语言处理
目标实例分割
注意力机制
联合正则化
下载PDF
职称材料
外观动作自适应目标跟踪方法
2
作者
熊珺瑶
王蓉
孙义博
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2022年第8期1525-1533,共9页
为降低目标运动时产生的外观形变对目标跟踪的影响,在DaSiamese-RPN基础上进行改进,提出了一种外观动作自适应的目标跟踪方法。在孪生网络的子网络中引入外观动作自适应更新模块,融合目标的时空信息和动作特征;利用2种欧氏距离分别度量...
为降低目标运动时产生的外观形变对目标跟踪的影响,在DaSiamese-RPN基础上进行改进,提出了一种外观动作自适应的目标跟踪方法。在孪生网络的子网络中引入外观动作自适应更新模块,融合目标的时空信息和动作特征;利用2种欧氏距离分别度量真实图和预测图之间的全局和局部差异,并对二者加权融合构建损失函数,加强预测目标特征图与真实目标特征图之间全局和局部信息的关联性。在VOT2016、VOT2018、VOT2019和OTB100数据集上进行测试,实验结果表明:在VOT2016和VOT2018数据集上,预测平均重叠率分别提高4.5%和6.1%;在VOT2019数据集上,准确度提高0.4%,预测平均重叠率降低1%;在OTB100数据集上,跟踪成功率提高0.3%,精确度提高0.2%。
展开更多
关键词
目标跟踪
外观动作自适应
孪生网络
特征融合
外观形变
下载PDF
职称材料
题名
基于DMN的跨模态目标实例分割方法
1
作者
熊珺瑶
宋振峰
王蓉
机构
中国人民公安大学信息与网络安全学院
出处
《计算机工程与应用》
CSCD
北大核心
2022年第20期117-123,共7页
基金
国家自然科学基金面上项目(62076246)。
文摘
在DMN的基础上提出一种跨模态目标实例分割方法,旨在结合自然语言表达,利用不同模态信息从图像中分割所描述对象。在视觉特征提取网络DPN92中引入CBAM注意力机制,关注空间和通道上的有用信息;将BN层替换为联合BN和FRN的正则化,减少批次量和通道数对提取特征网络性能的影响,提高网络的泛化能力;在三个通用数据集ReferIt、GRef和UNC上进行仿真实验。实验结果显示,提出的引入CBAM注意力机制和联合正则化改进模型在mIou评价指标上,ReferIt和GRef上分别提升了1.85和0.52个百分点,在UNC三个验证集上分别提升了1.98、2.22和2.75个百分点。表明改进模型在预测准确度方面优于已有模型。
关键词
跨模态
自然语言处理
目标实例分割
注意力机制
联合正则化
Keywords
cross-modal
natural language processing
target instance segmentation
attention mechanisms
union normalization
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
外观动作自适应目标跟踪方法
2
作者
熊珺瑶
王蓉
孙义博
机构
中国人民公安大学信息与网络安全学院
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2022年第8期1525-1533,共9页
基金
国家自然科学基金(62076246)。
文摘
为降低目标运动时产生的外观形变对目标跟踪的影响,在DaSiamese-RPN基础上进行改进,提出了一种外观动作自适应的目标跟踪方法。在孪生网络的子网络中引入外观动作自适应更新模块,融合目标的时空信息和动作特征;利用2种欧氏距离分别度量真实图和预测图之间的全局和局部差异,并对二者加权融合构建损失函数,加强预测目标特征图与真实目标特征图之间全局和局部信息的关联性。在VOT2016、VOT2018、VOT2019和OTB100数据集上进行测试,实验结果表明:在VOT2016和VOT2018数据集上,预测平均重叠率分别提高4.5%和6.1%;在VOT2019数据集上,准确度提高0.4%,预测平均重叠率降低1%;在OTB100数据集上,跟踪成功率提高0.3%,精确度提高0.2%。
关键词
目标跟踪
外观动作自适应
孪生网络
特征融合
外观形变
Keywords
target tracking
appearance and action adaptive
Siamese network
feature integration
appearance deformation
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于DMN的跨模态目标实例分割方法
熊珺瑶
宋振峰
王蓉
《计算机工程与应用》
CSCD
北大核心
2022
0
下载PDF
职称材料
2
外观动作自适应目标跟踪方法
熊珺瑶
王蓉
孙义博
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2022
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部