期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种高维数据聚类遗传算法 被引量:1
1
作者 孙浩军 熊琅环 《计算机工程与科学》 CSCD 北大核心 2010年第8期94-97,共4页
聚类分析是数据挖掘中的一个重要研究课题。在许多实际应用中,聚类分析的数据往往具有很高的维度,例如文档数据、基因微阵列等数据可以达到上千维,而在高维数据空间中,数据的分布较为稀疏。受这些因素的影响,许多对低维数据有效的经典... 聚类分析是数据挖掘中的一个重要研究课题。在许多实际应用中,聚类分析的数据往往具有很高的维度,例如文档数据、基因微阵列等数据可以达到上千维,而在高维数据空间中,数据的分布较为稀疏。受这些因素的影响,许多对低维数据有效的经典聚类算法对高维数据聚类常常失效。针对这类问题,本文提出了一种基于遗传算法的高维数据聚类新方法。该方法利用遗传算法的全局搜索能力对特征空间进行搜索,以找出有效的聚类特征子空间。同时,为了考察特征维在子空间聚类中的特征,本文设计出一种基于特征维对子空间聚类贡献率的适应度函数。人工数据、真实数据的实验结果以及与k-means算法的对比实验证明了该方法的可行性和有效性。 展开更多
关键词 高维数据聚类 遗传算法 特征子空间
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部