Nucleic acids are negatively charged biomolecules, and metal ions in solutions are important to their folding structures and thermodynamics, especially multivalent ions. However, it has been suggested that the binding...Nucleic acids are negatively charged biomolecules, and metal ions in solutions are important to their folding structures and thermodynamics, especially multivalent ions. However, it has been suggested that the binding of multivalent ions to nucleic acids cannot be quantitatively described by the well-established Poisson-Boltzmann (PB) theory. In this work, we made extensive calculations of ion distributions around various RNA-like macroions in divalent and trivalent salt solutions by PB theory and Monte Carlo (MC) simulations. Our calculations show that PB theory appears to underestimate multi- valent ion distributions around RNA-like macroions while can reliably predict monovalent ion distributions. Our extensive comparisons between PB theory and MC simulations indicate that when an RNA-like macroion gets ion neutralization be- yond a "critical" value, the multivalent ion distribution around that macroion can be approximately described by PB theory. Furthermore, an empirical formula was obtained to approximately quantify the critical ion neutralization for various RNA- like macroions in multivalent salt solutions, and this empirical formula was shown to work well for various real nucleic acids including RNAs and DNAs.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374234,11575128,11774272,and 11647312)
文摘Nucleic acids are negatively charged biomolecules, and metal ions in solutions are important to their folding structures and thermodynamics, especially multivalent ions. However, it has been suggested that the binding of multivalent ions to nucleic acids cannot be quantitatively described by the well-established Poisson-Boltzmann (PB) theory. In this work, we made extensive calculations of ion distributions around various RNA-like macroions in divalent and trivalent salt solutions by PB theory and Monte Carlo (MC) simulations. Our calculations show that PB theory appears to underestimate multi- valent ion distributions around RNA-like macroions while can reliably predict monovalent ion distributions. Our extensive comparisons between PB theory and MC simulations indicate that when an RNA-like macroion gets ion neutralization be- yond a "critical" value, the multivalent ion distribution around that macroion can be approximately described by PB theory. Furthermore, an empirical formula was obtained to approximately quantify the critical ion neutralization for various RNA- like macroions in multivalent salt solutions, and this empirical formula was shown to work well for various real nucleic acids including RNAs and DNAs.