期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合CA-BiFPN的轻量化人体姿态估计算法 被引量:2
1
作者 皮骏 牛厚兴 高志云 《图学学报》 CSCD 北大核心 2023年第5期868-878,共11页
针对现有的基于热力图的人体姿态估计网络模型复杂度高、算力需求大、不易部署至嵌入式平台和无人机移动平台等问题,提出了一种基于YOLOv5s6-Pose-ti-lite不使用热力图的轻量化人体姿态估计网络模型。通过将主干网络替换为GhostNet网络... 针对现有的基于热力图的人体姿态估计网络模型复杂度高、算力需求大、不易部署至嵌入式平台和无人机移动平台等问题,提出了一种基于YOLOv5s6-Pose-ti-lite不使用热力图的轻量化人体姿态估计网络模型。通过将主干网络替换为GhostNet网络,旨在以更少的计算资源输出更有效的特征信息,提升网络检测速度,缓解网络冗余的问题;在主干网络中结合轻量化的坐标注意力CA模块,将图片的人体关键点位置信息聚集到通道上,增强特征提取能力;引入加权双向特征金字塔网络,提升模型的特征融合能力,平衡不同尺度的特征信息;最后将CIoU损失函数替换为Wise-Io U(WIo U),进一步提升模型对人体关键点回归的性能。结果表明,在COCO2017人体关键点数据集上,优化后的网络模型参数量降低26.2%,计算量降低30.0%,平均精确度提升1.7个百分点、平均召回率提升2.7个百分点,能够满足实时性的效果,验证了所提模型的可行性和有效性。 展开更多
关键词 人体姿态估计 轻量化 坐标注意力 加权双向特征金字塔网络 损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部