Two-dimensional ferromagnetic van der Waals(2D vdW)heterostructures have opened new avenues for creating artificial materials with unprecedented electrical and optical functions beyond the reach of isolated 2D atomic ...Two-dimensional ferromagnetic van der Waals(2D vdW)heterostructures have opened new avenues for creating artificial materials with unprecedented electrical and optical functions beyond the reach of isolated 2D atomic layered materials,and for manipulating spin degree of freedom at the limit of few atomic layers,which empower next-generation spintronic and memory devices.However,to date,the electronic properties of 2D ferromagnetic heterostructures still remain elusive.Here,we report an unambiguous magnetoresistance behavior in CrI_(3)/graphene heterostructures,with a maximum magnetoresistance ratio of 2.8%.The magnetoresistance increases with increasing magnetic field,which leads to decreasing carrier densities through Lorentz force,and decreases with the increase of the bias voltage.This work highlights the feasibilities of applying two-dimensional ferromagnetic vdW heterostructures in spintronic and memory devices.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.51872039)Science and Technology Program of Sichuan,China(Grant No.M112018JY0025).
文摘Two-dimensional ferromagnetic van der Waals(2D vdW)heterostructures have opened new avenues for creating artificial materials with unprecedented electrical and optical functions beyond the reach of isolated 2D atomic layered materials,and for manipulating spin degree of freedom at the limit of few atomic layers,which empower next-generation spintronic and memory devices.However,to date,the electronic properties of 2D ferromagnetic heterostructures still remain elusive.Here,we report an unambiguous magnetoresistance behavior in CrI_(3)/graphene heterostructures,with a maximum magnetoresistance ratio of 2.8%.The magnetoresistance increases with increasing magnetic field,which leads to decreasing carrier densities through Lorentz force,and decreases with the increase of the bias voltage.This work highlights the feasibilities of applying two-dimensional ferromagnetic vdW heterostructures in spintronic and memory devices.