期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于模糊关联规则的微博用户潜在兴趣发现 被引量:2
1
作者 牛朝林 高茂庭 《计算机系统应用》 2016年第1期31-38,共8页
针对微博用户兴趣随时间变化的特征,提出一种基于模糊关联规则的潜在兴趣发现方法(PIDFAR),利用LDA主题模型表达微博主题分布,通过时间加权的方式计算出用户现在兴趣的主题分布,进行模糊关联规则挖掘,得出关联规则集合以表示和发现用户... 针对微博用户兴趣随时间变化的特征,提出一种基于模糊关联规则的潜在兴趣发现方法(PIDFAR),利用LDA主题模型表达微博主题分布,通过时间加权的方式计算出用户现在兴趣的主题分布,进行模糊关联规则挖掘,得出关联规则集合以表示和发现用户兴趣随时间发生变化的一般规律,最后根据关联规则集合中关联规则和用户现在兴趣的主题分布来计算相似度,取相似度较高的关联规则的后项的集合组成用户的潜在兴趣.实验表明,PIDFAR方法能够使得用户潜在兴趣的发现过程脱离用户的好友群体限制,相比基于协同过滤技术的潜在兴趣发现方法明显提高了发现微博用户潜在兴趣的准确率. 展开更多
关键词 潜在兴趣 关联规则 主题模型 加权 微博
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部