期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于兴趣注意力网络的会话推荐算法 被引量:1
1
作者 崔少国 独潇 张宜浩 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第1期67-75,共9页
针对现有基于图神经网络的会话推荐算法对用户主要兴趣偏好提取不充分的问题,提出了一种基于兴趣注意力网络的会话推荐算法(Session-Based Recommender Method Based on Interest Attention Network,SR-IAN)。首先,使用图神经网络捕获... 针对现有基于图神经网络的会话推荐算法对用户主要兴趣偏好提取不充分的问题,提出了一种基于兴趣注意力网络的会话推荐算法(Session-Based Recommender Method Based on Interest Attention Network,SR-IAN)。首先,使用图神经网络捕获物品之间的上下文转换关系,得到物品的图嵌入向量;其次,将图嵌入向量输入兴趣注意力网络中,提取用户的主要兴趣偏好;然后通过注意力层对物品的图嵌入向量进行加权区分;最后,通过预测层得到候选物品的点击概率值并对其进行排序。算法模型在3个公开数据集Diginetica、Retailrocket和Tmall上进行了实验验证,相比基准模型在MRR@20指标上分别有0.942%、1.183%和2.977%的提升,同时降低了模型时间复杂度,验证了该方法的有效性和高效性。 展开更多
关键词 注意力机制 图神经网络 推荐算法 自注意力网络 会话推荐
下载PDF
多注意力机制融合低高阶特征的神经推荐算法 被引量:5
2
作者 崔少国 独潇 杨泽田 《计算机工程与应用》 CSCD 北大核心 2023年第8期192-199,共8页
针对因子分解机仅提取低阶组合特征的局限性,提出了一种基于多注意力机制融合低阶和高阶组合特征的深度神经推荐算法(deep neural recommendation method,DeepNRM)。分别运用因子分解机和多层前馈神经网络从稀疏及稠密特征中提取低阶和... 针对因子分解机仅提取低阶组合特征的局限性,提出了一种基于多注意力机制融合低阶和高阶组合特征的深度神经推荐算法(deep neural recommendation method,DeepNRM)。分别运用因子分解机和多层前馈神经网络从稀疏及稠密特征中提取低阶和高阶组合特征;采用注意力网络和多头自注意力机制从低阶和高阶组合特征中自动选取关键特征;将低、高阶组合特征根据重要性进行融合共同进行推荐。算法模型在MovieLens和Criteo公共数据集上进行了实验验证,消融和对比实验结果表明,提出的算法模型与基准模型相比在AUC指标上分别有1.964个百分点和0.773个百分点的提升。 展开更多
关键词 因子分解机 推荐系统 深度神经网络 多头自注意力机制 特征抽取
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部