研究了镁合金在挤压过程中的坯料与工模具接触表面的摩擦状态。采用声发射技术对AZ91镁合金在不同挤压速度下挤压成形过程摩擦信号进行采集分析,研究挤压速度对摩擦声发射信号的影响,并分析了挤压型材的组织和力学性能。结果表明,镁合...研究了镁合金在挤压过程中的坯料与工模具接触表面的摩擦状态。采用声发射技术对AZ91镁合金在不同挤压速度下挤压成形过程摩擦信号进行采集分析,研究挤压速度对摩擦声发射信号的影响,并分析了挤压型材的组织和力学性能。结果表明,镁合金在挤压过程中声发射信号振幅和能量随滑动速度增加而增加,不同挤压速度下声发射振幅信号平均值为64.4 d B。声发射振幅与声发射能量具有对应性;挤出型材抗拉强度和屈服强度随挤压速度的增加而增加,当挤压速度为10 mm/min时,声发射信号振幅为56.3 d B,抗拉强度为350 N/mm2,平均晶粒尺寸为63.2μm;当挤压速度为40 mm/min时,声发射信号振幅为72.3 d B,抗拉强度为达405 N/mm2,平均晶粒尺寸为53.7μm。为采用声发射技术的实时波形和声发射信号参数的平均值监测金属挤压成形时的摩擦状态提供了试验依据。展开更多
文摘研究了镁合金在挤压过程中的坯料与工模具接触表面的摩擦状态。采用声发射技术对AZ91镁合金在不同挤压速度下挤压成形过程摩擦信号进行采集分析,研究挤压速度对摩擦声发射信号的影响,并分析了挤压型材的组织和力学性能。结果表明,镁合金在挤压过程中声发射信号振幅和能量随滑动速度增加而增加,不同挤压速度下声发射振幅信号平均值为64.4 d B。声发射振幅与声发射能量具有对应性;挤出型材抗拉强度和屈服强度随挤压速度的增加而增加,当挤压速度为10 mm/min时,声发射信号振幅为56.3 d B,抗拉强度为350 N/mm2,平均晶粒尺寸为63.2μm;当挤压速度为40 mm/min时,声发射信号振幅为72.3 d B,抗拉强度为达405 N/mm2,平均晶粒尺寸为53.7μm。为采用声发射技术的实时波形和声发射信号参数的平均值监测金属挤压成形时的摩擦状态提供了试验依据。