We demonstrate an ultra-compact short-wave infrared[SWIR]multispectral detector chip by monolithically integrating the narrowband Fabry–Perot microcavities array with the In Ga As detector focal plane array.A 16-chan...We demonstrate an ultra-compact short-wave infrared[SWIR]multispectral detector chip by monolithically integrating the narrowband Fabry–Perot microcavities array with the In Ga As detector focal plane array.A 16-channel SWIR multispectral detector has been fabricated for demonstration.Sixteen different narrowband response spectra are acquired on a 64×64 pixels detector chip by four times combinatorial etching processes.The peak of the response spectra varies from1450 to 1666 nm with full width at half-maximum of 24 nm on average.The size of the SWIR multispectral detection system is remarkably reduced to a 2 mm^(2) detector chip.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(No.11874376)Shanghai Science and Technology Foundations(Nos.19DZ2293400 and 19ZR1465900)+1 种基金Shanghai Municipal Science and Technology Major Project(No.2019SHZDZX01)Chinese Academy of Sciences President’s International Fellowship Initiative(No.2021PT0007)。
文摘We demonstrate an ultra-compact short-wave infrared[SWIR]multispectral detector chip by monolithically integrating the narrowband Fabry–Perot microcavities array with the In Ga As detector focal plane array.A 16-channel SWIR multispectral detector has been fabricated for demonstration.Sixteen different narrowband response spectra are acquired on a 64×64 pixels detector chip by four times combinatorial etching processes.The peak of the response spectra varies from1450 to 1666 nm with full width at half-maximum of 24 nm on average.The size of the SWIR multispectral detection system is remarkably reduced to a 2 mm^(2) detector chip.