针对滚动轴承在强背景噪声干扰下振动信号故障特征难以提取,以及实际运行中因故障样本缺乏而影响故障诊断准确性的问题,提出了基于固有时间尺度分解(Intrinsic Time Scale Decomposition,ITD)的AR模型振动信号特征提取,与支持向量数据...针对滚动轴承在强背景噪声干扰下振动信号故障特征难以提取,以及实际运行中因故障样本缺乏而影响故障诊断准确性的问题,提出了基于固有时间尺度分解(Intrinsic Time Scale Decomposition,ITD)的AR模型振动信号特征提取,与支持向量数据域描述(Support Vector Data Description,SVDD)相结合的轴承故障诊断方法.首先用ITD将振动信号分解成一系列的固有旋转(Proper Rotation,PR)分量,然后对每一个PR分量建立AR模型,提取模型参数和残差方差构造特征向量,用以建立轴承正常运行的SVDD模型,并以振动信号特征向量偏离SVDD模型的程度来判断轴承的运行状态.将该方法应用于滚动轴承的故障诊断,实验证明了所提方法的有效性.展开更多
消减噪声干扰,提取振动信号故障特征是旋转机械设备故障诊断的关键问题,为此本文提出了基于固有时间尺度分解(Intrinsic Time Scale Decomposition,ITD)-自回归(Auto Regressive,AR)模型的故障诊断方法.首先用ITD将振动信号分解成一系...消减噪声干扰,提取振动信号故障特征是旋转机械设备故障诊断的关键问题,为此本文提出了基于固有时间尺度分解(Intrinsic Time Scale Decomposition,ITD)-自回归(Auto Regressive,AR)模型的故障诊断方法.首先用ITD将振动信号分解成一系列的固有旋转(Proper Rotation,PR)分量;然后通过峭度准则对PR分量进行筛选,并对峭度值大的PR分量建立AR模型;最后对AR模型进行Teager能量算子(Teager-Kaiser Energy Operator,TKEO)分析,绘制Teager能量频谱,提取振动信号的冲击特征.将该方法应用于滚动轴承的故障诊断,实验结果表明,该方法能够准确地提取故障特征信息.展开更多
文摘针对滚动轴承在强背景噪声干扰下振动信号故障特征难以提取,以及实际运行中因故障样本缺乏而影响故障诊断准确性的问题,提出了基于固有时间尺度分解(Intrinsic Time Scale Decomposition,ITD)的AR模型振动信号特征提取,与支持向量数据域描述(Support Vector Data Description,SVDD)相结合的轴承故障诊断方法.首先用ITD将振动信号分解成一系列的固有旋转(Proper Rotation,PR)分量,然后对每一个PR分量建立AR模型,提取模型参数和残差方差构造特征向量,用以建立轴承正常运行的SVDD模型,并以振动信号特征向量偏离SVDD模型的程度来判断轴承的运行状态.将该方法应用于滚动轴承的故障诊断,实验证明了所提方法的有效性.
文摘消减噪声干扰,提取振动信号故障特征是旋转机械设备故障诊断的关键问题,为此本文提出了基于固有时间尺度分解(Intrinsic Time Scale Decomposition,ITD)-自回归(Auto Regressive,AR)模型的故障诊断方法.首先用ITD将振动信号分解成一系列的固有旋转(Proper Rotation,PR)分量;然后通过峭度准则对PR分量进行筛选,并对峭度值大的PR分量建立AR模型;最后对AR模型进行Teager能量算子(Teager-Kaiser Energy Operator,TKEO)分析,绘制Teager能量频谱,提取振动信号的冲击特征.将该方法应用于滚动轴承的故障诊断,实验结果表明,该方法能够准确地提取故障特征信息.