-
题名深度学习的三维人体姿态估计综述
被引量:8
- 1
-
-
作者
王仕宸
黄凯
陈志刚
张文东
-
机构
新疆大学软件学院
中南大学计算机学院
-
出处
《计算机科学与探索》
CSCD
北大核心
2023年第1期74-87,共14页
-
基金
长沙市科技计划重大专项(kh2103016)。
-
文摘
三维人体姿态估计的目的是预测出人体关节点的三维坐标位置和角度等信息,构建人体表示(如人体骨骼),以便进一步分析人体姿态。随着深度学习方法的不断推进,越来越多的基于深度学习的高性能三维人体姿态估计方法被提出。然而由于图片的人体遮挡、训练规模需求较大等原因,三维人体姿态估计仍然存在挑战。该研究目的是通过对近年来的多篇研究论文进行回顾,分析和比较这些方法的推理过程和核心要素,从不同输入的角度入手,全面阐述近年来基于深度学习的三维人体姿态估计方法。此外,还介绍了相关数据集和评价指标,在Human3.6M、Campus和Shelf数据集上对部分模型进行实验数据比对,分析对比实验结果。最后,根据本次调查的结果,讨论目前三维人体姿态估计所面临的困难和挑战,对三维人体姿态估计的未来发展进行了探讨。
-
关键词
三维人体姿态估计
深度学习
神经网络
关键点检测
-
Keywords
3D human pose estimation
deep learning
neural networks
joints detection
-
分类号
TP391
[自动化与计算机技术—计算机应用技术]
-