针对传统近邻传播聚类算法以数据点对之间的相似度作为输入度量,由于需要预设偏向参数p和阻尼系数λ,算法精度无法精确控制的问题,提出了一种跳跃跟踪麻雀搜索算法优化的交叉迭代近邻传播聚类方法.首先,针对麻雀搜索算法中发现者和加入...针对传统近邻传播聚类算法以数据点对之间的相似度作为输入度量,由于需要预设偏向参数p和阻尼系数λ,算法精度无法精确控制的问题,提出了一种跳跃跟踪麻雀搜索算法优化的交叉迭代近邻传播聚类方法.首先,针对麻雀搜索算法中发现者和加入者位置更新不足的问题,设计了一种跳跃跟踪优化策略,通过考虑偏好阻尼因子的跳跃策略设计大步长更新发现者,增加麻雀搜索算法的全局勘探能力和寻优速度,加入者设计动态小步长跟踪领头雀更新位置,同时,利用自适应种群划分机制更新发现者和加入者的比重,增加算法的后期局部开发能力和寻优速度;其次,设计基于扰动因子的Tent映射,在此基础上增加3个参数,使映射分布范围增大,并避免了陷入小周期点和不稳周期点;最后,引入轮廓系数作为评价函数,跳跃跟踪麻雀搜索算法自动寻找较优的p和λ,代替手动输入参数,并融合基于扰动因子的Tent映射优化近邻传播算法,交叉迭代确定最优簇数.使用多种算法聚类University of California Irvine数据集的10种公共数据集,仿真结果表明,本文提出的聚类算法与经典近邻传播算法、基于差分改进的仿射传播聚类算法、基于麻雀搜索算法优化的近邻传播聚类算法和进化近邻传播算法相比具有更优的搜索效率以及聚类精度.对国家信息数据进行了聚类分析,提出的方法更加准确有效合理,具有较好的应用价值.展开更多
高光谱图像的异常检测在军事、农业、勘探、防火等领域具有重要的应用价值。传统的高光谱图像异常检测算法未能有效地挖掘图像光谱的深层特征,而深度学习方法具有良好的提取深层特征信息的能力。由于异常检测问题一般无法获取地物先验信...高光谱图像的异常检测在军事、农业、勘探、防火等领域具有重要的应用价值。传统的高光谱图像异常检测算法未能有效地挖掘图像光谱的深层特征,而深度学习方法具有良好的提取深层特征信息的能力。由于异常检测问题一般无法获取地物先验信息,因此无监督网络相比于监督网络要更为适用。而现有的基于自编码器的异常检测算法没有对局部信息进行有效利用,导致检测效果受限。针对这一问题,本文提出一种基于稀疏表示约束的自编码器深度特征提取方法。首先通过栈式自编码器得到深层次语义信息;然后利用稀疏表示作为约束与编码器进行有效结合,挖掘了潜在隐藏空间中的特征元素的局部表示特性;最后采用分数傅里叶变换,通过空间-频率表示获得原始光谱与其傅里叶变换的中间域中的特征,进一步增强了背景和异常的光谱区分度,且能有效去除噪声的影响。在Hymap、AVIRIS、ROSIS、HYDICE这4种光谱仪采集的5幅高光谱遥感影像上进行了性能验证,得到的曲线下覆盖面积(area under curve,AUC)分别为0.9905、0.9983、0.9990、0.9928和0.9110,相比于对比算法都有了不同程度的效果提升。结果表明本文方法具有更好的检测精度。展开更多
文摘针对传统近邻传播聚类算法以数据点对之间的相似度作为输入度量,由于需要预设偏向参数p和阻尼系数λ,算法精度无法精确控制的问题,提出了一种跳跃跟踪麻雀搜索算法优化的交叉迭代近邻传播聚类方法.首先,针对麻雀搜索算法中发现者和加入者位置更新不足的问题,设计了一种跳跃跟踪优化策略,通过考虑偏好阻尼因子的跳跃策略设计大步长更新发现者,增加麻雀搜索算法的全局勘探能力和寻优速度,加入者设计动态小步长跟踪领头雀更新位置,同时,利用自适应种群划分机制更新发现者和加入者的比重,增加算法的后期局部开发能力和寻优速度;其次,设计基于扰动因子的Tent映射,在此基础上增加3个参数,使映射分布范围增大,并避免了陷入小周期点和不稳周期点;最后,引入轮廓系数作为评价函数,跳跃跟踪麻雀搜索算法自动寻找较优的p和λ,代替手动输入参数,并融合基于扰动因子的Tent映射优化近邻传播算法,交叉迭代确定最优簇数.使用多种算法聚类University of California Irvine数据集的10种公共数据集,仿真结果表明,本文提出的聚类算法与经典近邻传播算法、基于差分改进的仿射传播聚类算法、基于麻雀搜索算法优化的近邻传播聚类算法和进化近邻传播算法相比具有更优的搜索效率以及聚类精度.对国家信息数据进行了聚类分析,提出的方法更加准确有效合理,具有较好的应用价值.
文摘针对无人机长期跟踪过程中尺度变换导致目标丢失和跟踪精度低的问题,提出了一种基于飞蛾扑火优化(moth-flame optimization,MFO)的尺度比例感知空间长期跟踪器。首先,设计了高斯初始化以代替飞蛾扑火优化算法的随机初始化策略,降低优化算法在跟踪过程中的计算复杂度,减少算力浪费;其次,结合快速梯度直方图特征,构建了改进的飞蛾扑火优化跟踪器;然后,为了解决无人机航拍长期跟踪中目标尺度变化的问题,设计了一种自适应尺度变换的判别尺度空间跟踪(discriminative scale space tracking,DSST)算法,进一步提出了一种尺度比例感知空间跟踪器,解决了尺度滤波器中因长宽比固定而导致的跟踪漂移;同时,分析了滤波器响应峰值在各背景下的变化情况,提出了一种能反映环境变化下跟踪置信度的指标,并通过置信度将MFO优化跟踪框架与尺度比例感知空间跟踪器相结合,解决了尺度变化与长期跟踪目标丢失的问题;最后,在无人机长期跟踪数据集上开展了性能验证。结果表明:提出的算法可有效防止漂移现象的发生,提升跟踪效率;与目前跟踪领域中12种同类文献算法进行对比可知,提出的算法精度较高,满足实时性,能够有效解决无人机长期跟踪下的尺度变化及目标丢失等问题。
文摘高光谱图像的异常检测在军事、农业、勘探、防火等领域具有重要的应用价值。传统的高光谱图像异常检测算法未能有效地挖掘图像光谱的深层特征,而深度学习方法具有良好的提取深层特征信息的能力。由于异常检测问题一般无法获取地物先验信息,因此无监督网络相比于监督网络要更为适用。而现有的基于自编码器的异常检测算法没有对局部信息进行有效利用,导致检测效果受限。针对这一问题,本文提出一种基于稀疏表示约束的自编码器深度特征提取方法。首先通过栈式自编码器得到深层次语义信息;然后利用稀疏表示作为约束与编码器进行有效结合,挖掘了潜在隐藏空间中的特征元素的局部表示特性;最后采用分数傅里叶变换,通过空间-频率表示获得原始光谱与其傅里叶变换的中间域中的特征,进一步增强了背景和异常的光谱区分度,且能有效去除噪声的影响。在Hymap、AVIRIS、ROSIS、HYDICE这4种光谱仪采集的5幅高光谱遥感影像上进行了性能验证,得到的曲线下覆盖面积(area under curve,AUC)分别为0.9905、0.9983、0.9990、0.9928和0.9110,相比于对比算法都有了不同程度的效果提升。结果表明本文方法具有更好的检测精度。