为克服现有电力通信监测系统因噪声处理不佳导致的信号质量不高、系统负载能力差、耗时长等问题,将系统划分为数据层、网络层和应用层3个层次,采用卡尔曼滤波算法,设计了一种改进的电力通信自动化监测系统。在数据层通过设备采集电力通...为克服现有电力通信监测系统因噪声处理不佳导致的信号质量不高、系统负载能力差、耗时长等问题,将系统划分为数据层、网络层和应用层3个层次,采用卡尔曼滤波算法,设计了一种改进的电力通信自动化监测系统。在数据层通过设备采集电力通信数据,使用单元集成方式构建网元控制模块存储数据;通信传输信道将采集的数据传输至网络层,通过信道连接到应用层监测中心;基于数据服务器、交换器及工作站、路由器等设备构建数据处理模块、监测模块和管理模块,通过卡尔曼滤波算法完成数据处理,实现电力通信自动化监测系统设计。实验结果表明:该系统信号与干扰加噪声比(signal to interference plus noise ratio,SINR)较高,负载能力强,负载率低至40%左右,且平均运行耗时为8.0 s。展开更多
文摘为克服现有电力通信监测系统因噪声处理不佳导致的信号质量不高、系统负载能力差、耗时长等问题,将系统划分为数据层、网络层和应用层3个层次,采用卡尔曼滤波算法,设计了一种改进的电力通信自动化监测系统。在数据层通过设备采集电力通信数据,使用单元集成方式构建网元控制模块存储数据;通信传输信道将采集的数据传输至网络层,通过信道连接到应用层监测中心;基于数据服务器、交换器及工作站、路由器等设备构建数据处理模块、监测模块和管理模块,通过卡尔曼滤波算法完成数据处理,实现电力通信自动化监测系统设计。实验结果表明:该系统信号与干扰加噪声比(signal to interference plus noise ratio,SINR)较高,负载能力强,负载率低至40%左右,且平均运行耗时为8.0 s。