为解决基于稀疏表示的跟踪算法在小样本空间中出现模板漂移而在大样本空间中实时性差的问题,提出了一种基于圆形采样的双重稀疏表示目标跟踪算法.该算法对跟踪矩形窗数据进行圆形采样,这不仅保证了目标的灰度和结构信息,而且减少了背景...为解决基于稀疏表示的跟踪算法在小样本空间中出现模板漂移而在大样本空间中实时性差的问题,提出了一种基于圆形采样的双重稀疏表示目标跟踪算法.该算法对跟踪矩形窗数据进行圆形采样,这不仅保证了目标的灰度和结构信息,而且减少了背景信息干扰.同时对稀疏表示得到的小模板系数引入距离权重判断函数,判断目标样本变化情况,提高模板更新效率.最后引入HOG(histogram of oriented gradient)特征,对稀疏表示得到的多个次优解进行二次稀疏表示,有效解决小样本数量少带来的估计误差.实验结果表明,该算法能够提高小样本空间中目标跟踪的鲁棒性和实时性.展开更多
In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. ...In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. Based upon the close connection between optimization function of denois- ing problem and regularization parameter, an updating model is built to select the regularized param- eter. Both the parameter and the objective function are dynamically updated in alternating minimiza- tion iterations, consequently, it can make the algorithm work in different SNR environments. Mean- while, a strategy for choosing the initial regularization parameter is presented. Considering Morozov discrepancy principle, a convex function with respect to the regularization parameter is modeled. Via the optimization method, it is easy and fast to find the convergence value of parameter, which is suitable for the iterative image denoising algorithm. Comparing with several state-of-the-art algo- rithms, many experiments confirm that the denoising algorithm with the proposed parameter selec- tion is highly effective to evaluate peak signal-to-noise ratio (PSNR) and structural similarity展开更多
文摘为解决基于稀疏表示的跟踪算法在小样本空间中出现模板漂移而在大样本空间中实时性差的问题,提出了一种基于圆形采样的双重稀疏表示目标跟踪算法.该算法对跟踪矩形窗数据进行圆形采样,这不仅保证了目标的灰度和结构信息,而且减少了背景信息干扰.同时对稀疏表示得到的小模板系数引入距离权重判断函数,判断目标样本变化情况,提高模板更新效率.最后引入HOG(histogram of oriented gradient)特征,对稀疏表示得到的多个次优解进行二次稀疏表示,有效解决小样本数量少带来的估计误差.实验结果表明,该算法能够提高小样本空间中目标跟踪的鲁棒性和实时性.
基金Supported by the National High Technology Research and Development Program of China(863Program)(2012AA8012011C)
文摘In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. Based upon the close connection between optimization function of denois- ing problem and regularization parameter, an updating model is built to select the regularized param- eter. Both the parameter and the objective function are dynamically updated in alternating minimiza- tion iterations, consequently, it can make the algorithm work in different SNR environments. Mean- while, a strategy for choosing the initial regularization parameter is presented. Considering Morozov discrepancy principle, a convex function with respect to the regularization parameter is modeled. Via the optimization method, it is easy and fast to find the convergence value of parameter, which is suitable for the iterative image denoising algorithm. Comparing with several state-of-the-art algo- rithms, many experiments confirm that the denoising algorithm with the proposed parameter selec- tion is highly effective to evaluate peak signal-to-noise ratio (PSNR) and structural similarity