期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multiple Detection Model Fusion Framework for Printed Circuit Board Defect Detection
1
作者 武星 张庆丰 +2 位作者 王健嘉 姚骏峰 郭毅可 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第6期717-727,共11页
The printed circuit board(PCB)is an indispensable component of electronic products,which deter-mines the quality of these products.With the development and advancement of manufacturing technology,the layout and struct... The printed circuit board(PCB)is an indispensable component of electronic products,which deter-mines the quality of these products.With the development and advancement of manufacturing technology,the layout and structure of PCB are getting complicated.However,there are few effective and accurate PCB defect detection methods.There are high requirements for the accuracy of PCB defect detection in the actual pro-duction environment,so we propose two PCB defect detection frameworks with multiple model fusion including the defect detection by multi-model voting method(DDMV)and the defect detection by multi-model learning method(DDML).With the purpose of reducing wrong and missing detection,the DDMV and DDML integrate multiple defect detection networks with different fusion strategies.The effectiveness and accuracy of the proposed framework are verified with extensive experiments on two open-source PCB datasets.The experimental results demonstrate that the proposed DDMV and DDML are better than any other individual state-of-the-art PCB defect detection model in F1-score,and the area under curve value of DDML is also higher than that of any other individual detection model.Furthermore,compared with DDMV,the DDML with an automatic machine learning method achieves the best performance in PCB defect detection,and the Fl-score on the two datasets can reach 99.7%and 95.6%respectively. 展开更多
关键词 printed circuit board(PCB) defect detection model fusion object detection model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部