We investigate the effects of pure Dzyaloshinskii Moriya (DM) interaction with magnetic field on entanglement in intrinsic decoherence, assuming that the system is initially in four Bell states |φ±〉 = (|00...We investigate the effects of pure Dzyaloshinskii Moriya (DM) interaction with magnetic field on entanglement in intrinsic decoherence, assuming that the system is initially in four Bell states |φ±〉 = (|00) ± |11〉)/√2 and |ψ±〉 = (|01) ±|10〉)/√2, respectively. It is found that if the system is initially in the state p1(0) = |φ+〉〈φ+1, the entanglement can obtain its maximum when the DM interaction vector D is in the plane of XOZ and magnetic field B = By with the infinite time t, moreover the entanglement is independent of By and t when By is perpendicular to D. In addition, we obtain similar results when the system is initially in the states p2(0) = |φ-〉〈φ-| or p3 (0) = |ψ+〉〈ψ+1. However, we find that if the system is initially in the state P4 (0) = |ψ-〉〈ψ-l, the entanglement can obtain its maximum for infinite t, when the DM vector is in the plane ofYOZ, XOZ, or XOY, with the magnetic field parallel to X, Y, or Z axis, respectively. Moreover, when the axial B is perpendicular to D for the initial state p4(O), the negativity oscillates with time t and reaches a stable value, the larger the value of B is, the greater the stable value is, and the shorter the oscillation time of the negativity is. Thus we can adjust the direction and value of the external magnetic field to obtain the maximal entanglement, and avoid the adverse effects of external environment in some initial state. This is feasible within the cun'ent experimental technology.展开更多
In this paper, we propose a scheme for generating an arbitrary three-dimensional pure state of vibrational motion of a trapped ion. Our scheme is based on a sequence of laser pulses, which are tuned to the appropriate...In this paper, we propose a scheme for generating an arbitrary three-dimensional pure state of vibrational motion of a trapped ion. Our scheme is based on a sequence of laser pulses, which are tuned to the appropriate vibrational sidebands with respect to the appropriate electronic transition.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11204061,11374085,11104057,11274010 and 11204002the Anhui Provincial Natural Science Foundation under Grant No 1408085MA16+4 种基金the Anhui Provincial Candidates for Academic and Technical Leaders Foundation under Grant No 2015H052the Discipline Top-Notch Talents Foundationthe Excellent Young Talents Support Plan of Anhui Provincial Universitiesthe Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20113401110002the 211 Project of Anhui University,and the Personnel Department of Anhui Province
文摘We investigate the effects of pure Dzyaloshinskii Moriya (DM) interaction with magnetic field on entanglement in intrinsic decoherence, assuming that the system is initially in four Bell states |φ±〉 = (|00) ± |11〉)/√2 and |ψ±〉 = (|01) ±|10〉)/√2, respectively. It is found that if the system is initially in the state p1(0) = |φ+〉〈φ+1, the entanglement can obtain its maximum when the DM interaction vector D is in the plane of XOZ and magnetic field B = By with the infinite time t, moreover the entanglement is independent of By and t when By is perpendicular to D. In addition, we obtain similar results when the system is initially in the states p2(0) = |φ-〉〈φ-| or p3 (0) = |ψ+〉〈ψ+1. However, we find that if the system is initially in the state P4 (0) = |ψ-〉〈ψ-l, the entanglement can obtain its maximum for infinite t, when the DM vector is in the plane ofYOZ, XOZ, or XOY, with the magnetic field parallel to X, Y, or Z axis, respectively. Moreover, when the axial B is perpendicular to D for the initial state p4(O), the negativity oscillates with time t and reaches a stable value, the larger the value of B is, the greater the stable value is, and the shorter the oscillation time of the negativity is. Thus we can adjust the direction and value of the external magnetic field to obtain the maximal entanglement, and avoid the adverse effects of external environment in some initial state. This is feasible within the cun'ent experimental technology.
基金Supported by Key Program of National Natural Science Foundation of China under Grant No. 60931002National Natural Science Foundation of China under Grant No.10704001+3 种基金Anhui Provincial Natural Science Foundation under Grant No. 070412060the Major Program of the Education Department of Anhui Province under Grant No. KJ2010ZD08the Key Program of the Education Department of Anhui Province under Grant No. KJ2010A287the Personal Development Foundation of Anhui Province under Grant No. 2009Z022
文摘In this paper, we propose a scheme for generating an arbitrary three-dimensional pure state of vibrational motion of a trapped ion. Our scheme is based on a sequence of laser pulses, which are tuned to the appropriate vibrational sidebands with respect to the appropriate electronic transition.