期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的汽水分离再热数字孪生系统故障诊断研究
1
作者 王克璇 邢天阳 朱小良 《热能动力工程》 CAS CSCD 北大核心 2023年第3期164-173,共10页
针对汽水分离再热系统等复杂工业系统,为解决传统故障诊断模型准确率受限于故障样本稀缺和故障数据时间维度与变量维度耦合的问题,提出一种基于深度学习的故障诊断方法。首先,构建汽水分离再热数字孪生系统,用以建立故障诊断数据仓库,... 针对汽水分离再热系统等复杂工业系统,为解决传统故障诊断模型准确率受限于故障样本稀缺和故障数据时间维度与变量维度耦合的问题,提出一种基于深度学习的故障诊断方法。首先,构建汽水分离再热数字孪生系统,用以建立故障诊断数据仓库,解决数据样本层面稀缺性的问题。其次,进一步构建基于深度残差网络的故障诊断模型,用以诊断汽水分离再热系统典型故障,包括流量不均、破口、传热恶化和阀门特性变化,从而解决数据变量层面时变、多维度的问题。结果表明:数字孪生系统能够实现汽水分离再热系统稳态、动态和故障工况的精确仿真,满足后续深度学习模型的数据需求;基于深度残差网络的故障诊断模型能够实现时变、多维工业数据的故障诊断;采用T分布随机邻域嵌入(TSNE)方法对模型可视化,可对不同故障类型的数据进行明显区分。 展开更多
关键词 故障诊断 深度残差网络 数字孪生体 汽水分离再热系统
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部