期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
物联网中带有隐私保护的鲁棒联邦学习研究
1
作者 杨志刚 王卓彤 +3 位作者 吴大鹏 王汝言 吴渝 吕翊 《电子与信息学报》 EI CSCD 北大核心 2023年第12期4235-4244,共10页
联邦学习允许数据不出本地的情况下实现数据价值的有效流动,被认为是物联网(IoT)场景下兼顾数据共享与隐私保护的有效方法。然而,联邦学习系统易受拜占庭攻击和推理攻击的影响,导致系统的鲁棒性和数据的隐私性受损。物联网设备的数据异... 联邦学习允许数据不出本地的情况下实现数据价值的有效流动,被认为是物联网(IoT)场景下兼顾数据共享与隐私保护的有效方法。然而,联邦学习系统易受拜占庭攻击和推理攻击的影响,导致系统的鲁棒性和数据的隐私性受损。物联网设备的数据异构性和资源瓶颈,也为带有隐私保护的鲁棒聚合算法设计带来巨大挑战。该文提出面向异构物联网的带有数据重采样的鲁棒聚合方法Re-Sim,通过测量方向相似性和标准化更新幅度实现模型的鲁棒聚合,并采用数据重采样技术增强数据异构环境下模型的鲁棒性。同时构建轻量安全聚合协议(LSA),在保证数据隐私性的同时兼顾模型鲁棒性、准确性和计算开销,并从理论上对协议的隐私性进行了分析。仿真结果表明,该方案能在数据异构情况下有效抵抗拜占庭攻击和推理攻击,与基线方法相比,该文所提方案精度提高1%~3%,同时减轻客户端侧计算开销79%。 展开更多
关键词 物联网 联邦学习 鲁棒聚合 秘密分享
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部