针对新能源接入后的无功电压控制问题,基于模型预测控制(model predictive control,MPC)理论,提出一种多阶段自动电压控制(automatic voltage control,AVC)优化策略。在日前优化安排离散无功补偿设备(电容器、有载变压器分接头)投切计...针对新能源接入后的无功电压控制问题,基于模型预测控制(model predictive control,MPC)理论,提出一种多阶段自动电压控制(automatic voltage control,AVC)优化策略。在日前优化安排离散无功补偿设备(电容器、有载变压器分接头)投切计划的基础上,日内采用基于MPC的优化控制思路,利用连续无功补偿装置(static var generator,SVG)对电压进行控制。通过建立灵敏度矩阵计算得到未来多个时刻的母线电压预测值;以最小化未来一段时间预测的电压控制偏差为目标函数,建立日内滚动优化控制模型,求解得到SVG的出力序列,并通过反馈校正,完成日内无功电压MPC。在改进的IEEE 30算例的基础上对所提方法进行验证,结果表明,该方法能够有效应对电网电压快速频繁波动的问题,及时追踪电网电压波动,使SVG出力更加平滑、电压控制效果更好。展开更多
文摘针对新能源接入后的无功电压控制问题,基于模型预测控制(model predictive control,MPC)理论,提出一种多阶段自动电压控制(automatic voltage control,AVC)优化策略。在日前优化安排离散无功补偿设备(电容器、有载变压器分接头)投切计划的基础上,日内采用基于MPC的优化控制思路,利用连续无功补偿装置(static var generator,SVG)对电压进行控制。通过建立灵敏度矩阵计算得到未来多个时刻的母线电压预测值;以最小化未来一段时间预测的电压控制偏差为目标函数,建立日内滚动优化控制模型,求解得到SVG的出力序列,并通过反馈校正,完成日内无功电压MPC。在改进的IEEE 30算例的基础上对所提方法进行验证,结果表明,该方法能够有效应对电网电压快速频繁波动的问题,及时追踪电网电压波动,使SVG出力更加平滑、电压控制效果更好。