With the device feature's size miniaturization in very large scale integrated circuit and ultralarge scale integrated circuit towards the sub\|micron and beyond level, the next generation of IC device requires s...With the device feature's size miniaturization in very large scale integrated circuit and ultralarge scale integrated circuit towards the sub\|micron and beyond level, the next generation of IC device requires silicon wafers with more improved electrical characteristics and reliability as well as a high perfection of the wafer surface. Compared with the polished wafer with a relatively high density of crystal originated defects (e. g. COPs), silicon epi\|wafers can meet such high requirements. The current development of researches on the 150mm silicon epi\|wafers for advanced IC applications is described. The P/P\++ CMOS silicon epi\|wafers were fabricated on a PE2061 Epitaxial Reactor (made by Italian LPE Company). The material parameters of epi\|wafers, such as epi\|defects, uniformity of thickness and resistivity, transition width, and minority carrier generation lifetime for epi\|layer were characterized in detail. It is demonstrated that the 150mm silicon epi\|wafers on PE2061 can meet the stringent requirements for the advanced IC applications.展开更多
基金Project Supported by National Ninth5-year Plan of China.
文摘With the device feature's size miniaturization in very large scale integrated circuit and ultralarge scale integrated circuit towards the sub\|micron and beyond level, the next generation of IC device requires silicon wafers with more improved electrical characteristics and reliability as well as a high perfection of the wafer surface. Compared with the polished wafer with a relatively high density of crystal originated defects (e. g. COPs), silicon epi\|wafers can meet such high requirements. The current development of researches on the 150mm silicon epi\|wafers for advanced IC applications is described. The P/P\++ CMOS silicon epi\|wafers were fabricated on a PE2061 Epitaxial Reactor (made by Italian LPE Company). The material parameters of epi\|wafers, such as epi\|defects, uniformity of thickness and resistivity, transition width, and minority carrier generation lifetime for epi\|layer were characterized in detail. It is demonstrated that the 150mm silicon epi\|wafers on PE2061 can meet the stringent requirements for the advanced IC applications.