采用AFORS-HET软件对CsGeI_3空穴传输层(Hole Transport Material,HTM)平面异质结钙钛矿太阳电池进行了模拟,TiO_2作为电子传输层,CH_3NH_3PbI_3作为光吸收层,C作为背电极,分别讨论了钙钛矿光吸收层厚度、缺陷浓度,光吸收层/HTM界面态...采用AFORS-HET软件对CsGeI_3空穴传输层(Hole Transport Material,HTM)平面异质结钙钛矿太阳电池进行了模拟,TiO_2作为电子传输层,CH_3NH_3PbI_3作为光吸收层,C作为背电极,分别讨论了钙钛矿光吸收层厚度、缺陷浓度,光吸收层/HTM界面态密度和HTM对太阳电池性能参数的影响。模拟优化得到CsGeI_3HTM的PSCs最佳性能参数为:Voc=1.199 V,Jsc=22.2 m A·cm^(-2),FF=86.22%,PCE=22.95%,效率虽略低于spiro作为HTM的器件,但考虑生产工艺和制备成本,CsGeI_3作为HTM的PSCs将具有更好的应用前景。展开更多
To date, many efforts have been made to improve the performance of paintable carbon-based (PC-based) perovskite solar cells (PSCs). Though great progress has been achieved, their power conversion efficiencies are ...To date, many efforts have been made to improve the performance of paintable carbon-based (PC-based) perovskite solar cells (PSCs). Though great progress has been achieved, their power conversion efficiencies are still relatively low compared with hole-transport-materials-based PSCs. General research on influencing factors of performance in PC-based PSCs is still insufficient. In this work, PC-based PSCs were fabricated in ambient air and four groups of controlled experi- ments were performed in which the PbI2 layers were prepared with or without antisolvent extraction treatment. These four groups of experiments were designed to find out the effect of different influencing factors on PC-based PSCs performance, for example, PbI2 residual, the surface morphology of the perovskite film, the surface roughness of the perovskite film, and the contact status of the perovskite/carbon electrode interface. With a systematic analysis, we demonstrated that the contact status of the perovskite/carbon electrode interface played a vital role in PC-based PSCs, and a fiat, smooth perovskite surface could help to improve this contact status significantly. Besides, on the precondition of a poor contact interface, no PbI2 residual and a good surface morphology only brought limited benefits to the performances of PC-based PSCs.展开更多
文摘采用AFORS-HET软件对CsGeI_3空穴传输层(Hole Transport Material,HTM)平面异质结钙钛矿太阳电池进行了模拟,TiO_2作为电子传输层,CH_3NH_3PbI_3作为光吸收层,C作为背电极,分别讨论了钙钛矿光吸收层厚度、缺陷浓度,光吸收层/HTM界面态密度和HTM对太阳电池性能参数的影响。模拟优化得到CsGeI_3HTM的PSCs最佳性能参数为:Voc=1.199 V,Jsc=22.2 m A·cm^(-2),FF=86.22%,PCE=22.95%,效率虽略低于spiro作为HTM的器件,但考虑生产工艺和制备成本,CsGeI_3作为HTM的PSCs将具有更好的应用前景。
基金Project supported by the National Natural Science Foundation of China(Grant No.51702245)the Fundamental Research Funds for the Central Universities,China(Grant No.WUT:2017IB013)
文摘To date, many efforts have been made to improve the performance of paintable carbon-based (PC-based) perovskite solar cells (PSCs). Though great progress has been achieved, their power conversion efficiencies are still relatively low compared with hole-transport-materials-based PSCs. General research on influencing factors of performance in PC-based PSCs is still insufficient. In this work, PC-based PSCs were fabricated in ambient air and four groups of controlled experi- ments were performed in which the PbI2 layers were prepared with or without antisolvent extraction treatment. These four groups of experiments were designed to find out the effect of different influencing factors on PC-based PSCs performance, for example, PbI2 residual, the surface morphology of the perovskite film, the surface roughness of the perovskite film, and the contact status of the perovskite/carbon electrode interface. With a systematic analysis, we demonstrated that the contact status of the perovskite/carbon electrode interface played a vital role in PC-based PSCs, and a fiat, smooth perovskite surface could help to improve this contact status significantly. Besides, on the precondition of a poor contact interface, no PbI2 residual and a good surface morphology only brought limited benefits to the performances of PC-based PSCs.