目的:微生物是降解磺胺类抗生素(sulfonamides,SAs)的主要驱动者,但在抗生素胁迫下易处于活的非可培养状态(viable but non-culturable,VBNC)而无法筛选得到;利用藤黄微球菌产生的复苏促进因子(resuscitation-promoting factor,Rpf)改善...目的:微生物是降解磺胺类抗生素(sulfonamides,SAs)的主要驱动者,但在抗生素胁迫下易处于活的非可培养状态(viable but non-culturable,VBNC)而无法筛选得到;利用藤黄微球菌产生的复苏促进因子(resuscitation-promoting factor,Rpf)改善VBNC降解菌群的生长繁殖特性,提高废水的抗生素去除效果。方法:以磺胺二甲嘧啶(sulfamethazine,SMZ)废水为处理对象,利用Rpf蛋白的复苏作用驯化SMZ废水处理系统内活性污泥中潜在的功能降解菌群。结果:当SMZ质量浓度为0.5 mg/L时,投加Rpf蛋白后,SMZ的去除率提高了9.38%;当SMZ质量浓度增加到20 mg/L时,SMZ的去除率提高了17.10%;高通量测序结果表明,Rpf蛋白的投加主要促进了与SMZ降解相关的归属于变形菌门(Proteobacteria)和拟杆菌门(Bacteroidota)的unclassified_f_Comamonadaceae、OLB8、Shinella和Rhodococcus等在系统内的富集,进而提高了SMZ去除效果。结论:首次利用Rpf强化微生物降解SMZ废水,为Rpf应用于其他磺胺类抗生素的去除提供了理论基础。展开更多
A stabilized finite element algorithm potential for wind-structure interaction(WSI) problem is presented in this paper. Streamline upwind Petrov-Galerkin(SUPG) scheme of the large eddy simulation(LES) of dynamic sub-g...A stabilized finite element algorithm potential for wind-structure interaction(WSI) problem is presented in this paper. Streamline upwind Petrov-Galerkin(SUPG) scheme of the large eddy simulation(LES) of dynamic sub-grid scale(DSGS) is developed under the framework of arbitrary Lagrangian-Eulerian(ALE) description to solve the governing equations. High stabilization is achieved by a three-step technique in the temporal discretization. On the other hand, the partitioned procedure is employed for the consideration of the coupled WSI problem. Newmark integral method is introduced for the computation of structure domain, while spring analogy method is used for the grid update of the mesh domain. The developed computational codes are applied to the analysis of wind-induced effect of a spatial latticed structure. The numerical predictions of the three-dimensional wind flow features, the wind pressures and the wind-induced effect of spatial structures are given. Comparisons are made between the effects of rigid structure in view of the WSI.展开更多
基金the National Natural Science Foundation of China(Nos.11172174 and 51278297)the Research Program of Shanghai Leader Talent(No.20)the Doctoral Disciplinary Special Research Project of Chinese Ministry of Education(No.20130073110096)
文摘A stabilized finite element algorithm potential for wind-structure interaction(WSI) problem is presented in this paper. Streamline upwind Petrov-Galerkin(SUPG) scheme of the large eddy simulation(LES) of dynamic sub-grid scale(DSGS) is developed under the framework of arbitrary Lagrangian-Eulerian(ALE) description to solve the governing equations. High stabilization is achieved by a three-step technique in the temporal discretization. On the other hand, the partitioned procedure is employed for the consideration of the coupled WSI problem. Newmark integral method is introduced for the computation of structure domain, while spring analogy method is used for the grid update of the mesh domain. The developed computational codes are applied to the analysis of wind-induced effect of a spatial latticed structure. The numerical predictions of the three-dimensional wind flow features, the wind pressures and the wind-induced effect of spatial structures are given. Comparisons are made between the effects of rigid structure in view of the WSI.