纯跟踪算法和斯坦利算法均属于对车辆前轮转角进行控制的几何跟踪方法,具有简单、直接、控制参数少、容易实现等特点。无人驾驶拖拉机作业时,由于农田作业影响因素众多,路径跟踪往往达不到理想效果,因此,根据纯跟踪算法和斯坦利算法各...纯跟踪算法和斯坦利算法均属于对车辆前轮转角进行控制的几何跟踪方法,具有简单、直接、控制参数少、容易实现等特点。无人驾驶拖拉机作业时,由于农田作业影响因素众多,路径跟踪往往达不到理想效果,因此,根据纯跟踪算法和斯坦利算法各自特点,搭建权重分配的策略模型,提出一种自适应跟踪算法。通过优化权重参数,得出最优权重值,并在不同土壤环境、不同速度以及不同重心位置条件下,进行对比仿真试验。仿真试验表明,自适应算法应对不同作业工况时具有更好的纠偏能力。采用千寻基站将定位信号发送给车载组合导航接收机,获得整机的精准定位信息,将试验地块坐标录入到导航系统中,利用工控机规划出合理的作业路径,进行田间试验。田间试验表明,采用自适应算法,播种作业时横向偏差均值为0.03 m,地头转向时横向偏差为0.11 m, 22行作业横向偏差均值均在0.05 m之内,满足作业精度要求。展开更多
文摘纯跟踪算法和斯坦利算法均属于对车辆前轮转角进行控制的几何跟踪方法,具有简单、直接、控制参数少、容易实现等特点。无人驾驶拖拉机作业时,由于农田作业影响因素众多,路径跟踪往往达不到理想效果,因此,根据纯跟踪算法和斯坦利算法各自特点,搭建权重分配的策略模型,提出一种自适应跟踪算法。通过优化权重参数,得出最优权重值,并在不同土壤环境、不同速度以及不同重心位置条件下,进行对比仿真试验。仿真试验表明,自适应算法应对不同作业工况时具有更好的纠偏能力。采用千寻基站将定位信号发送给车载组合导航接收机,获得整机的精准定位信息,将试验地块坐标录入到导航系统中,利用工控机规划出合理的作业路径,进行田间试验。田间试验表明,采用自适应算法,播种作业时横向偏差均值为0.03 m,地头转向时横向偏差为0.11 m, 22行作业横向偏差均值均在0.05 m之内,满足作业精度要求。