针对风电齿轮箱轴承故障问题,提出一种基于信息融合将BP神经网络与D-S证据理论相结合的风电轴承故障诊断方法。首先基于大数据,挖掘SCADA(supervisory control and data acquisition)系统中与风电齿轮箱轴承故障有关的振动、温度、电流...针对风电齿轮箱轴承故障问题,提出一种基于信息融合将BP神经网络与D-S证据理论相结合的风电轴承故障诊断方法。首先基于大数据,挖掘SCADA(supervisory control and data acquisition)系统中与风电齿轮箱轴承故障有关的振动、温度、电流、转矩和转速信号等故障特征;然后将各信号故障特征量作为神经网络输入,将神经网络的输出归一化作为证据理论基本概率分配值(BPA值),为解决各证据之间冲突问题,采用一种基于加权的方法来改进各条证据,以减小冲突;最后利用组合规则将各条改进的证据融合,得出最终诊断结果。研究基于某风场2MW风电机组的实际运行数据,结果表明:随着融合信号维度的增加,最终诊断结果的准确率也逐步提高,融合多维信号的可靠性明显高于单一信号。展开更多
文摘针对风电齿轮箱轴承故障问题,提出一种基于信息融合将BP神经网络与D-S证据理论相结合的风电轴承故障诊断方法。首先基于大数据,挖掘SCADA(supervisory control and data acquisition)系统中与风电齿轮箱轴承故障有关的振动、温度、电流、转矩和转速信号等故障特征;然后将各信号故障特征量作为神经网络输入,将神经网络的输出归一化作为证据理论基本概率分配值(BPA值),为解决各证据之间冲突问题,采用一种基于加权的方法来改进各条证据,以减小冲突;最后利用组合规则将各条改进的证据融合,得出最终诊断结果。研究基于某风场2MW风电机组的实际运行数据,结果表明:随着融合信号维度的增加,最终诊断结果的准确率也逐步提高,融合多维信号的可靠性明显高于单一信号。