钻井液流变性是钻井液流动和变形的特性,对于携带与悬浮岩屑、提高钻进速度至关重要,准确掌握钻井液流变参数是保证井眼清洁与高效钻进的前提。提出一种基于卷积神经网络(Convolu-tionalNeuralNetwork,CNN)的钻井液流变参数智能识别方法...钻井液流变性是钻井液流动和变形的特性,对于携带与悬浮岩屑、提高钻进速度至关重要,准确掌握钻井液流变参数是保证井眼清洁与高效钻进的前提。提出一种基于卷积神经网络(Convolu-tionalNeuralNetwork,CNN)的钻井液流变参数智能识别方法,通过磁力搅拌产生稳定的钻井液流动图像,利用多种数据增强方法增加图像数量并建立数据库,增强模型的鲁棒性和泛化能力。优化AlexNet卷积神经网络算法,构建钻井液流变参数识别模型。将数据库划分为训练集:验证集:测试集=7:2:1,对训练集进行迭代训练并通过验证集调整参数获得最佳拟合模型。此外,运用混淆矩阵、卷积核可视化技术和类激活技术(Gradient-weighted Class Activation Mapping,Grad-CAM)对模型进行多方位评估。结果表明:(1)钻井液流变参数识别模型对钻井液塑性黏度测试的宏精确率为95.2%,宏召回率为94.7%,宏F1值为0.95。(2)对钻井液表观黏度测试的宏精确率为91.6%,宏召回率为91.5%,宏F1值为0.90。(3)利用卷积核可视化技术和Grad-CAM对特征提取进行可视化处理,发现钻井液波纹形状和大小会影响模型流变参数识别准确度。(4)室内测试结果表明,该模型的测试误差为±2 mPa·s,在设计允许范围以内,具有较高的识别精确度和稳定性。所提出的钻井液流变参数实时智能识别方法可为安全、快速和准确地进行钻井液流变性测试提供智能化技术思路。展开更多
文摘钻井液流变性是钻井液流动和变形的特性,对于携带与悬浮岩屑、提高钻进速度至关重要,准确掌握钻井液流变参数是保证井眼清洁与高效钻进的前提。提出一种基于卷积神经网络(Convolu-tionalNeuralNetwork,CNN)的钻井液流变参数智能识别方法,通过磁力搅拌产生稳定的钻井液流动图像,利用多种数据增强方法增加图像数量并建立数据库,增强模型的鲁棒性和泛化能力。优化AlexNet卷积神经网络算法,构建钻井液流变参数识别模型。将数据库划分为训练集:验证集:测试集=7:2:1,对训练集进行迭代训练并通过验证集调整参数获得最佳拟合模型。此外,运用混淆矩阵、卷积核可视化技术和类激活技术(Gradient-weighted Class Activation Mapping,Grad-CAM)对模型进行多方位评估。结果表明:(1)钻井液流变参数识别模型对钻井液塑性黏度测试的宏精确率为95.2%,宏召回率为94.7%,宏F1值为0.95。(2)对钻井液表观黏度测试的宏精确率为91.6%,宏召回率为91.5%,宏F1值为0.90。(3)利用卷积核可视化技术和Grad-CAM对特征提取进行可视化处理,发现钻井液波纹形状和大小会影响模型流变参数识别准确度。(4)室内测试结果表明,该模型的测试误差为±2 mPa·s,在设计允许范围以内,具有较高的识别精确度和稳定性。所提出的钻井液流变参数实时智能识别方法可为安全、快速和准确地进行钻井液流变性测试提供智能化技术思路。