One-dimensional(1D)topological insulators are superior for low-dissipation applications owing to the 1D character of surface states where scatterings other than prohibited backscattering are further restricted.Among t...One-dimensional(1D)topological insulators are superior for low-dissipation applications owing to the 1D character of surface states where scatterings other than prohibited backscattering are further restricted.Among the proposed candidates for 1D topological materials,TaNiTe_(5)has attracted intensive attention for its quasi-one-dimensional(quasi-1D)crystalline structure.In this study,we identify the chain-like construction and anisotropic electronic states on TaNiTe_5 surface with scanning tunneling microscopy.The electron scatterings are largely suppressed even with chromium impurities deposited on the surface and magnetic field applied normal to the surface,which endows TaNiTe_5 great potential for low-dissipation spintronic applications.展开更多
基金the National Key R&D Program of China(Grant No.2017YFA0305400)the National Natural Science Foundation of China(Grant No.11227902)。
文摘One-dimensional(1D)topological insulators are superior for low-dissipation applications owing to the 1D character of surface states where scatterings other than prohibited backscattering are further restricted.Among the proposed candidates for 1D topological materials,TaNiTe_(5)has attracted intensive attention for its quasi-one-dimensional(quasi-1D)crystalline structure.In this study,we identify the chain-like construction and anisotropic electronic states on TaNiTe_5 surface with scanning tunneling microscopy.The electron scatterings are largely suppressed even with chromium impurities deposited on the surface and magnetic field applied normal to the surface,which endows TaNiTe_5 great potential for low-dissipation spintronic applications.