The electrochemical reduction of CO_(2) towards hydrocarbons is a promising technology that can utilize CO_(2) and prevent its atmospheric accumulation while simultaneously storing renewable en‐ergy.However,current C...The electrochemical reduction of CO_(2) towards hydrocarbons is a promising technology that can utilize CO_(2) and prevent its atmospheric accumulation while simultaneously storing renewable en‐ergy.However,current CO_(2) electrolyzers remain impractical on a large scale due to the low current densities and faradaic efficiencies(FE)on various electrocatalysts.In this study,hybrid HKUST‐1 metal‐organic framework‒fluorinated imidazolium‐based room temperature ionic liquid(RTIL)electrocatalysts are designed to selectively reduce CO_(2) to CH_(4).An impressive FE of 65.5%towards CH_(4) at-1.13 V is achieved for the HKUST‐1/[BMIM][PF_(6)]hybrid,with a stable FE greater than 50%maintained for at least 9 h in an H‐cell.The observed improvements are attributed to the increased local CO_(2) concentration and the improved CO_(2)‐to‐CH_(4) thermodynamics in the presence of the RTIL molecules adsorbed on the HKUST‐1‐derived Cu clusters.These findings offer a novel approach of immobilizing RTIL co‐catalysts within porous frameworks for CO_(2) electroreduction applications.展开更多
文摘The electrochemical reduction of CO_(2) towards hydrocarbons is a promising technology that can utilize CO_(2) and prevent its atmospheric accumulation while simultaneously storing renewable en‐ergy.However,current CO_(2) electrolyzers remain impractical on a large scale due to the low current densities and faradaic efficiencies(FE)on various electrocatalysts.In this study,hybrid HKUST‐1 metal‐organic framework‒fluorinated imidazolium‐based room temperature ionic liquid(RTIL)electrocatalysts are designed to selectively reduce CO_(2) to CH_(4).An impressive FE of 65.5%towards CH_(4) at-1.13 V is achieved for the HKUST‐1/[BMIM][PF_(6)]hybrid,with a stable FE greater than 50%maintained for at least 9 h in an H‐cell.The observed improvements are attributed to the increased local CO_(2) concentration and the improved CO_(2)‐to‐CH_(4) thermodynamics in the presence of the RTIL molecules adsorbed on the HKUST‐1‐derived Cu clusters.These findings offer a novel approach of immobilizing RTIL co‐catalysts within porous frameworks for CO_(2) electroreduction applications.