Photochargeable behavior of hydrogen storage alloy electrode modified with TiO_2 nanoparticles(MH/TiO_2) was investigated by measuring its photocharge-discharge characteristics. The results showed the MH/TiO_2 electro...Photochargeable behavior of hydrogen storage alloy electrode modified with TiO_2 nanoparticles(MH/TiO_2) was investigated by measuring its photocharge-discharge characteristics. The results showed the MH/TiO_2 electrode could store light energy photoelectrochemically when it was illuminated. The potential of the MH/TiO_2 electrode could be charged to 0.843 V.The discharge time of the MH/TiO_2 electrode increased with increasing the illuminating time, The mechanism of photochargeable behavior of the MH/T...展开更多
Perovskite-type SrTiO3 powders were prepared by using strontium acetate, tetrabutyl titanate and sodium hydroxide via direct hydrolysis-precipitation process. AB5-type hydrogen storage alloy(HSA) electrodes modified...Perovskite-type SrTiO3 powders were prepared by using strontium acetate, tetrabutyl titanate and sodium hydroxide via direct hydrolysis-precipitation process. AB5-type hydrogen storage alloy(HSA) electrodes modified with SrTiO3 powders were prepared and the photoelectrochemical characteristics of the as-prepared electrodes were investigated. The results of cyclic voltammograph show that the current of reduction peak increases remarkably under the light irradiation. The obvious photochargeable properties are obtained for the hydrogen storage alloys modified with Perovskite-type SrTiO3 powders. During photocharging process, the potential of the electrode shifts quickly to negative direction and a potential plateau occurs. HSA electrode modified with SrTiO3 powders prepared by direct hydrolysis-precipitation process gives the higher potential of about -0.90V(vs Hg/HgO) under the light irradiation. SEM observation discloses that a large amount of microcracks occur on the surface of the electrode after photocharging process, which is caused by the formation of hydride in the bulk of electrode.展开更多
基金supported by the National Natural Science Foundation of China(No. 59872030)
文摘Photochargeable behavior of hydrogen storage alloy electrode modified with TiO_2 nanoparticles(MH/TiO_2) was investigated by measuring its photocharge-discharge characteristics. The results showed the MH/TiO_2 electrode could store light energy photoelectrochemically when it was illuminated. The potential of the MH/TiO_2 electrode could be charged to 0.843 V.The discharge time of the MH/TiO_2 electrode increased with increasing the illuminating time, The mechanism of photochargeable behavior of the MH/T...
基金Project(50201016) supported by the National Natural Science Foundation of China Project(Y404044) supported by theNatural Science Foundation of Zhejiang Province
文摘Perovskite-type SrTiO3 powders were prepared by using strontium acetate, tetrabutyl titanate and sodium hydroxide via direct hydrolysis-precipitation process. AB5-type hydrogen storage alloy(HSA) electrodes modified with SrTiO3 powders were prepared and the photoelectrochemical characteristics of the as-prepared electrodes were investigated. The results of cyclic voltammograph show that the current of reduction peak increases remarkably under the light irradiation. The obvious photochargeable properties are obtained for the hydrogen storage alloys modified with Perovskite-type SrTiO3 powders. During photocharging process, the potential of the electrode shifts quickly to negative direction and a potential plateau occurs. HSA electrode modified with SrTiO3 powders prepared by direct hydrolysis-precipitation process gives the higher potential of about -0.90V(vs Hg/HgO) under the light irradiation. SEM observation discloses that a large amount of microcracks occur on the surface of the electrode after photocharging process, which is caused by the formation of hydride in the bulk of electrode.