期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向企业数据孤岛的联邦排序学习 被引量:15
1
作者 史鼎元 王晏晟 +1 位作者 郑鹏飞 童咏昕 《软件学报》 EI CSCD 北大核心 2021年第3期669-688,共20页
排序学习(learning-to-rank,简称LTR)模型在信息检索领域取得了显著成果,而该模型的传统训练方法需要收集大规模文本数据.然而,随着数据隐私保护日渐受到人们重视,从多个数据拥有者(如企业)手中收集数据训练排序学习模型的方式变得不可... 排序学习(learning-to-rank,简称LTR)模型在信息检索领域取得了显著成果,而该模型的传统训练方法需要收集大规模文本数据.然而,随着数据隐私保护日渐受到人们重视,从多个数据拥有者(如企业)手中收集数据训练排序学习模型的方式变得不可行.各企业之间数据被迫独立存储,形成了数据孤岛.由于排序模型训练需要使用查询记录、文档等诸多隐私信息,数据孤岛难以融合打通,这制约了排序学习模型的训练.联邦学习能够让多数据拥有方在隐私保护的前提下联合训练模型,是一种打通数据孤岛的新方法.在其启发下,提出了一种新的框架,即面向企业数据孤岛的联邦排序学习,它同时解决了联邦学习场景下排序学习所面临的两大挑战,即交叉特征生成与缺失标签处理.为了应对多方交叉特征的生成问题,使用了一种基于略图(sketch)数据结构与差分隐私的方法,其相比于传统加密方法具有更高的效率,同时还具有隐私性与结果精度的理论保证.为了应对缺失标签问题,提出了一种新的联邦半监督学习方法.最终,通过在公开数据集上的大量实验,验证了所提方法的有效性. 展开更多
关键词 排序学习 企业数据孤岛 联邦学习 略图 差分隐私
下载PDF
群体智能中的联邦学习算法综述 被引量:13
2
作者 杨强 童咏昕 +5 位作者 王晏晟 范力欣 王薇 陈雷 王魏 康焱 《智能科学与技术学报》 2022年第1期29-44,共16页
群体智能是在互联网高速普及下诞生的人工智能新范式。然而,数据孤岛与数据隐私保护问题导致群体间数据共享困难,群体智能应用难以构建。联邦学习是一类新兴的打破数据孤岛、联合构建群智模型的重要方法。首先,介绍了联邦学习的基础概... 群体智能是在互联网高速普及下诞生的人工智能新范式。然而,数据孤岛与数据隐私保护问题导致群体间数据共享困难,群体智能应用难以构建。联邦学习是一类新兴的打破数据孤岛、联合构建群智模型的重要方法。首先,介绍了联邦学习的基础概念以及其与群体智能的关系;其次,基于群体智能视角对联邦学习算法框架进行了分类,从隐私、精度与效率3个角度讨论了联邦学习算法优化技术;而后,阐述了基于线性模型、树模型与神经网络模型的联邦学习算法模型;最后,介绍了联邦学习代表性开源平台与典型应用,并对联邦学习研究进行总结展望。 展开更多
关键词 群体智能 联邦学习 隐私保护
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部