传统的视觉同步定位与建图(simultaneous localization and mapping,SLAM)算法大多数建立在假设场景是静态的基础之上,这种假设限制了视觉SLAM在现实场景的应用。针对传统SLAM算法在动态环境下定位精度低、鲁棒性差的问题,提出了一种实...传统的视觉同步定位与建图(simultaneous localization and mapping,SLAM)算法大多数建立在假设场景是静态的基础之上,这种假设限制了视觉SLAM在现实场景的应用。针对传统SLAM算法在动态环境下定位精度低、鲁棒性差的问题,提出了一种实时动态视觉SLAM算法。首先所提出的算法以ORBSLAM3为基础,新增了一个语义线程,该线程与其他线程并行运行,可以避免语义线程运行较慢而影响跟踪线程的运行。然后使用移动概率更新和传播语义信息,将其保存在地图中,并且使用数据关联算法从跟踪中去除动态点。最后使用公共TUM数据集来评估,证明了所提出的算法在动态环境下的鲁棒性和实时性优于现有的算法。展开更多
文摘传统的视觉同步定位与建图(simultaneous localization and mapping,SLAM)算法大多数建立在假设场景是静态的基础之上,这种假设限制了视觉SLAM在现实场景的应用。针对传统SLAM算法在动态环境下定位精度低、鲁棒性差的问题,提出了一种实时动态视觉SLAM算法。首先所提出的算法以ORBSLAM3为基础,新增了一个语义线程,该线程与其他线程并行运行,可以避免语义线程运行较慢而影响跟踪线程的运行。然后使用移动概率更新和传播语义信息,将其保存在地图中,并且使用数据关联算法从跟踪中去除动态点。最后使用公共TUM数据集来评估,证明了所提出的算法在动态环境下的鲁棒性和实时性优于现有的算法。