期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多标签语义分割的硬笔字笔画提取
1
作者 余嘉云 李丁宇 +2 位作者 徐占洋 王晶弘 林巍 《计算机系统应用》 2024年第9期174-182,共9页
汉字作为中华文化的载体,因其复杂的结构区别于其他文字.笔画作为汉字的基本单元,在硬笔字评价中起到至关重要的作用.正确提取笔画,是硬笔字评价的首要步骤.现有的笔画提取方法多数是基于规则的,由于汉字的复杂性,这些规则通常无法顾及... 汉字作为中华文化的载体,因其复杂的结构区别于其他文字.笔画作为汉字的基本单元,在硬笔字评价中起到至关重要的作用.正确提取笔画,是硬笔字评价的首要步骤.现有的笔画提取方法多数是基于规则的,由于汉字的复杂性,这些规则通常无法顾及所有特征,且在评价时无法根据笔顺等信息与模板字笔画匹配.为了解决这些问题,该文将笔画提取转化为多标签语义分割问题,提出了多标签语义分割模型(M-TransUNet),利用深度卷积模型以汉字为单位任务进行训练,保留了笔画原有结构,避免了笔画段组合的二义性,同时得到了硬笔字的笔顺,有利于笔画评价等下游任务.由于硬笔字图像只分为前景和背景,没有额外颜色信息,所以更容易产生FP(false positive)分割噪声.为解决此问题,本文还提出了一种针对笔画分割结果的局部平滑策略(local smooth strategy on stroke,LSSS),淡化噪声的影响.最后,本文对M-TransUNet的分割性能以及效率进行了实验,证明了本文算法在很小性能损失的情况下,极大地提升了效率.同时对LSSS算法进行了实验,证明其在FP噪声消除的有效性. 展开更多
关键词 硬笔字 笔画提取 多标签语义分割 局部平滑策略
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部