为同时考虑多种不确定因素对非线性结构模型修正的影响,提出了一种基于模块化贝叶斯推理的随机非线性模型修正方法。为了描述具有时变特性的非线性动力响应,提取结构动力响应主分量的瞬时加速度幅值作为非线性指标,基于贝叶斯方法,将整...为同时考虑多种不确定因素对非线性结构模型修正的影响,提出了一种基于模块化贝叶斯推理的随机非线性模型修正方法。为了描述具有时变特性的非线性动力响应,提取结构动力响应主分量的瞬时加速度幅值作为非线性指标,基于贝叶斯方法,将整个模型修正过程分为3个相互独立的模块:首先建立非线性模型的高斯过程替代模型记为模块一;同时,为考虑模型误差对非线性结构随机模型修正的影响,将设计变量作为输入,模型误差作为输出,建立关于模型误差的高斯过程替代模型,记为模块二;最后,结合贝叶斯推理方法与模块一和模块二中的高斯过程模型,利用过渡马尔可夫链蒙特卡罗(transitional Markov Chain Monte Carlo,TMCMC)随机采样方法估计待修正参数后验概率密度函数,实现基于模块化贝叶斯推理的随机非线性模型修正研究。采用三跨连续梁桥数值算例来验证所提出的随机非线性模型修正方法的准确性,并对比了不同噪声水平、不同程度模型误差条件下的模型修正结果。研究结果表明,基于模块化贝叶斯推理的随机非线性模型修正方法能够有效地实现非线性结构的随机模型修正,并具有较好的鲁棒性。展开更多
文摘为同时考虑多种不确定因素对非线性结构模型修正的影响,提出了一种基于模块化贝叶斯推理的随机非线性模型修正方法。为了描述具有时变特性的非线性动力响应,提取结构动力响应主分量的瞬时加速度幅值作为非线性指标,基于贝叶斯方法,将整个模型修正过程分为3个相互独立的模块:首先建立非线性模型的高斯过程替代模型记为模块一;同时,为考虑模型误差对非线性结构随机模型修正的影响,将设计变量作为输入,模型误差作为输出,建立关于模型误差的高斯过程替代模型,记为模块二;最后,结合贝叶斯推理方法与模块一和模块二中的高斯过程模型,利用过渡马尔可夫链蒙特卡罗(transitional Markov Chain Monte Carlo,TMCMC)随机采样方法估计待修正参数后验概率密度函数,实现基于模块化贝叶斯推理的随机非线性模型修正研究。采用三跨连续梁桥数值算例来验证所提出的随机非线性模型修正方法的准确性,并对比了不同噪声水平、不同程度模型误差条件下的模型修正结果。研究结果表明,基于模块化贝叶斯推理的随机非线性模型修正方法能够有效地实现非线性结构的随机模型修正,并具有较好的鲁棒性。