期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于随机森林的抗混淆Android恶意应用检测
被引量:
2
1
作者
王柯林
杨珂
+2 位作者
赵瑞哲
辛丽玲
汪秋云
《信息安全研究》
2021年第2期126-135,共10页
Android恶意应用的迅速增长引发了极大的安全隐患,很多行为特征容易受到代码混淆技术的影响,导致恶意行为无法被有效检测.提出了一种基于随机森林的Android恶意应用检测模型.模型选用危险权限、敏感API调用、Service、Activity、Intent...
Android恶意应用的迅速增长引发了极大的安全隐患,很多行为特征容易受到代码混淆技术的影响,导致恶意行为无法被有效检测.提出了一种基于随机森林的Android恶意应用检测模型.模型选用危险权限、敏感API调用、Service、Activity、Intent、短信发送频率等特征,其中危险权限和Service等Android组件在代码混淆过程中不受影响,采用随机森林、决策树、SVM和卷积神经网络等机器学习方法,利用10折交叉验证的方法训练.通过实验证明,对于未混淆的数据集,该方法能达到分类准确率95.77%的效果;对于混淆之后的数据集可达到分类准确率91.01%的效果.
展开更多
关键词
ANDROID应用
动静态分析
特征选择
随机森林
敏感API调用
下载PDF
职称材料
题名
基于随机森林的抗混淆Android恶意应用检测
被引量:
2
1
作者
王柯林
杨珂
赵瑞哲
辛丽玲
汪秋云
机构
中国科学院大学
中国科学院信息工程研究所
国网电子商务有限公司(国网雄安金融科技集团有限公司)
国家电网有限公司区块链技术实验室
出处
《信息安全研究》
2021年第2期126-135,共10页
基金
国家电网科技项目(SGTYHT/19-JS-217)。
文摘
Android恶意应用的迅速增长引发了极大的安全隐患,很多行为特征容易受到代码混淆技术的影响,导致恶意行为无法被有效检测.提出了一种基于随机森林的Android恶意应用检测模型.模型选用危险权限、敏感API调用、Service、Activity、Intent、短信发送频率等特征,其中危险权限和Service等Android组件在代码混淆过程中不受影响,采用随机森林、决策树、SVM和卷积神经网络等机器学习方法,利用10折交叉验证的方法训练.通过实验证明,对于未混淆的数据集,该方法能达到分类准确率95.77%的效果;对于混淆之后的数据集可达到分类准确率91.01%的效果.
关键词
ANDROID应用
动静态分析
特征选择
随机森林
敏感API调用
Keywords
Android application
dynamic and static analysis
feature selection
random forest
sensitive API calls
分类号
TP309 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于随机森林的抗混淆Android恶意应用检测
王柯林
杨珂
赵瑞哲
辛丽玲
汪秋云
《信息安全研究》
2021
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部