期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融入变分自编码网络的文本生成三维运动人体
1
作者 李健 杨钧 +1 位作者 王丽燕 王永归 《中国图象图形学报》 CSCD 北大核心 2024年第5期1434-1446,共13页
目的针对现有动态三维数字人体模型生成时不能改变体型、运动固定单一等问题,提出一种融合变分自编码器(variational auto-encoder,VAE)网络、对比语言—图像预训练(contrastive language-image pretraining,CLIP)网络与门控循环单元(ga... 目的针对现有动态三维数字人体模型生成时不能改变体型、运动固定单一等问题,提出一种融合变分自编码器(variational auto-encoder,VAE)网络、对比语言—图像预训练(contrastive language-image pretraining,CLIP)网络与门控循环单元(gate recurrent unit,GRU)网络生成运动三维人体模型的方法。该方法可根据文本描述生成相应体型和动作的三维人体模型。方法首先,使用VAE编码网络生成潜在编码,结合CLIP网络零样本生成体型与文本表述相符的人体模型,以解决蒙皮多人线性(skinned multi-person linear,SMPL)模型参数不合理而生成不符合正常体型特征的人体模型问题;其次,采用VAE网络与GRU网络生成与文本表述相符的变长时间三维人体姿势序列,以解决现有运动生成方法仅生成事先指定的姿势序列、无法生成运动时间不同的姿势序列问题;最后,将体型特征与运动特征结合,得到三维运动人体模型。结果在HumanML3D数据集上进行人体生成实验,并与其他3种方法进行比较,相比于现有最好方法,R精度的Top1、Top2和Top3分别提高了0.031、0.034和0.028,弗雷歇初始距离(Fréchet inception distance,FID)提高了0.094,多样性提高了0.065。消融实验验证了模型的有效性,结果表明本文方法对人体模型生成效果有提升。结论本文方法可通过文本描述生成运动三维人体模型,模型的体型和动作更符合输入文本的描述。 展开更多
关键词 人体动作合成 自然语言处理(NLP) 深度学习 蒙皮多人线性模型 变分自编码器网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部