在实际场景中随着红外探测距离的缩小,红外弱小目标的尺寸等会动态增长,常用的红外弱小目标检测跟踪算法便无法继续稳定检测与跟踪。为解决上述问题,本文提出了一种自适应红外目标尺寸变化的检测跟踪方法,借助低阈值信噪比实现弱小目标...在实际场景中随着红外探测距离的缩小,红外弱小目标的尺寸等会动态增长,常用的红外弱小目标检测跟踪算法便无法继续稳定检测与跟踪。为解决上述问题,本文提出了一种自适应红外目标尺寸变化的检测跟踪方法,借助低阈值信噪比实现弱小目标的初筛,并通过自适应尺寸分割避免大目标漏检误检,构建备选目标库,最后配合使用卡尔曼算法模型预测运动轨迹,完成小范围波门检测,实现目标跟踪。与传统DBT(Detection Before Track)跟踪检测算法相比,本文算法可同时兼顾弱小目标和大尺寸目标的检测跟踪,在所选目标尺寸动态增长的场景中,本文算法的检测跟踪率提升了约10%。展开更多
文摘在实际场景中随着红外探测距离的缩小,红外弱小目标的尺寸等会动态增长,常用的红外弱小目标检测跟踪算法便无法继续稳定检测与跟踪。为解决上述问题,本文提出了一种自适应红外目标尺寸变化的检测跟踪方法,借助低阈值信噪比实现弱小目标的初筛,并通过自适应尺寸分割避免大目标漏检误检,构建备选目标库,最后配合使用卡尔曼算法模型预测运动轨迹,完成小范围波门检测,实现目标跟踪。与传统DBT(Detection Before Track)跟踪检测算法相比,本文算法可同时兼顾弱小目标和大尺寸目标的检测跟踪,在所选目标尺寸动态增长的场景中,本文算法的检测跟踪率提升了约10%。