The epidosites are interpreted to form in upflow zones at the base of ore-forming oceanic hydrothermal systems that vent as black smokers on the sea floor. This study presents new field, major and trace element, and o...The epidosites are interpreted to form in upflow zones at the base of ore-forming oceanic hydrothermal systems that vent as black smokers on the sea floor. This study presents new field, major and trace element, and oxygen isotope data for the recently discovered epidosites in the ca. 1.0 Ga Miaowan (庙湾) ophiolite located near the northern margin of the Yangtze craton. The ep-idosites occur mainly in the cores of strongly de-formed, lensoidal amphibolites. Field observations, major and trace elements and oxygen isotopes sug-gest that the epidosites were formed by metasoma-tism of ocean floor basalts, diabase dykes, and gabbros during seafloor hydrothermal alteration.展开更多
The Miaowan (庙湾) ophiolite is a highly dismembered ophiolitic complex cropping out near the northern margin of the Yangtze craton. The rocks of this complex consist of, from bottom to top, harzburgite tectonite lo...The Miaowan (庙湾) ophiolite is a highly dismembered ophiolitic complex cropping out near the northern margin of the Yangtze craton. The rocks of this complex consist of, from bottom to top, harzburgite tectonite locally containing podiform chromite, dunite, layered and isotropic gabbro, a sheeted dike complex (SDC), meta-pillow lavas with chert pods and layers, and tectonically intercalated marble. The SDC is a very important and significant part of the Miaowan ophiolitic sequence, and grades downward into gabbro and ultramafic rocks, and upward into meta-pillow lavas. Some dikes preserve one-way chilled margins, typical of extensional ophiolitic settings, whereas most preserve dou-ble chilled margins, in cases where the chilling direction can be determined. The SDC is mainly com-posed of meta-diabase (dolerite), meta-plagiogranite, and small amounts of meta-gabbro and ultramafic rocks. LA-ICP-MS zircon dating yields an upper intercept age of 1 026±79 Ma for one meta-plagiogranite, 1 043±23 Ma for a second meta-plagiogranite and I 096±32 Ma for one meta-gabbro at the bottom of the SDC, suggesting formation of the SDC at circa 1 026-1 096 Ma, consistent with the recently determined formation age of the Miaowan ophiolite. Sparse geochemical data on the meta-diabase indicate that the protolith was a sub-alkaline, low-potassium tholeiite similar to mid-ocean ridge basalt (MORB). The chondrite-normalized rare earth element (REE) patterns of the meta-diabase are generally flat ((La/Yb)N=0.56-0.94), with a slight depletion in LREE, but no obvious Eu anomalies. Given that the meta-plagiogranites show evidence of formation in a suprasubduction zone environment, we suggest that the basalts were originally island arc tholeiites, perhaps formed in an extensional forearc setting. The geochemistry of the meta-diabase and plagiogranite from the sheeted dikes, together with regional relationships, all agree with the previous interpretations that the Miaowan ophiolite formed in a suprasubduction zone setting.展开更多
基金supported by the China Postdoctoral Science Foundation (No. 20100471203)the Ministry of Land and Resources (No. 1212010670104)+1 种基金the National Natural Science Foundation of China (Nos. 91014002, 40821061, 41272242)Ministry of Education of China (Nos. B07039 and TGRC201024)
文摘The epidosites are interpreted to form in upflow zones at the base of ore-forming oceanic hydrothermal systems that vent as black smokers on the sea floor. This study presents new field, major and trace element, and oxygen isotope data for the recently discovered epidosites in the ca. 1.0 Ga Miaowan (庙湾) ophiolite located near the northern margin of the Yangtze craton. The ep-idosites occur mainly in the cores of strongly de-formed, lensoidal amphibolites. Field observations, major and trace elements and oxygen isotopes sug-gest that the epidosites were formed by metasoma-tism of ocean floor basalts, diabase dykes, and gabbros during seafloor hydrothermal alteration.
基金supported by the National Natural Science Foundation of China (Nos. 91014002, 40821061, 41272242)Ministry of Education of China (No. B07039)+2 种基金the Open Foundation of Ministry of Education (No. TGRC201024)the Post-doctoral Science Foundation (No. 20100471203)the Ministry of Land and Resources Foundation (No. 1212010670104)
文摘The Miaowan (庙湾) ophiolite is a highly dismembered ophiolitic complex cropping out near the northern margin of the Yangtze craton. The rocks of this complex consist of, from bottom to top, harzburgite tectonite locally containing podiform chromite, dunite, layered and isotropic gabbro, a sheeted dike complex (SDC), meta-pillow lavas with chert pods and layers, and tectonically intercalated marble. The SDC is a very important and significant part of the Miaowan ophiolitic sequence, and grades downward into gabbro and ultramafic rocks, and upward into meta-pillow lavas. Some dikes preserve one-way chilled margins, typical of extensional ophiolitic settings, whereas most preserve dou-ble chilled margins, in cases where the chilling direction can be determined. The SDC is mainly com-posed of meta-diabase (dolerite), meta-plagiogranite, and small amounts of meta-gabbro and ultramafic rocks. LA-ICP-MS zircon dating yields an upper intercept age of 1 026±79 Ma for one meta-plagiogranite, 1 043±23 Ma for a second meta-plagiogranite and I 096±32 Ma for one meta-gabbro at the bottom of the SDC, suggesting formation of the SDC at circa 1 026-1 096 Ma, consistent with the recently determined formation age of the Miaowan ophiolite. Sparse geochemical data on the meta-diabase indicate that the protolith was a sub-alkaline, low-potassium tholeiite similar to mid-ocean ridge basalt (MORB). The chondrite-normalized rare earth element (REE) patterns of the meta-diabase are generally flat ((La/Yb)N=0.56-0.94), with a slight depletion in LREE, but no obvious Eu anomalies. Given that the meta-plagiogranites show evidence of formation in a suprasubduction zone environment, we suggest that the basalts were originally island arc tholeiites, perhaps formed in an extensional forearc setting. The geochemistry of the meta-diabase and plagiogranite from the sheeted dikes, together with regional relationships, all agree with the previous interpretations that the Miaowan ophiolite formed in a suprasubduction zone setting.