期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于TREE-LSTM算法的船舶汽轮机组变负荷故障诊断
1
作者
王灏桐
李彦军
+1 位作者
杨龙滨
史建新
《舰船科学技术》
北大核心
2024年第17期110-115,共6页
针对船舶汽轮机组变负荷过程故障诊断中的耦合参数时序特征难以捕捉以及正常参数变动的干扰等问题,引入TREE-LSTM神经网络模型以实现复杂非线性系统动态数据分类。首先建立某船舶汽轮机组仿真模型,分析并进行故障仿真;随后进行数据预处...
针对船舶汽轮机组变负荷过程故障诊断中的耦合参数时序特征难以捕捉以及正常参数变动的干扰等问题,引入TREE-LSTM神经网络模型以实现复杂非线性系统动态数据分类。首先建立某船舶汽轮机组仿真模型,分析并进行故障仿真;随后进行数据预处理与特征工程;最后训练TREE-LSTM模型进行故障诊断,并与SVM、LSTM等模型进行比较。TREE-LSTM模型对于船舶汽轮机组变负荷过程的故障诊断正确率为98.7%,正确率最高。由于引入时间序列与复杂神经网络拓扑结构,TREE-LSTM在处理非线性系统动态数据分类问题时效果更好。
展开更多
关键词
汽轮机组
动态仿真
故障诊断
树形长短时记忆网络
下载PDF
职称材料
题名
基于TREE-LSTM算法的船舶汽轮机组变负荷故障诊断
1
作者
王灏桐
李彦军
杨龙滨
史建新
机构
哈尔滨工程大学动力与能源工程学院
出处
《舰船科学技术》
北大核心
2024年第17期110-115,共6页
文摘
针对船舶汽轮机组变负荷过程故障诊断中的耦合参数时序特征难以捕捉以及正常参数变动的干扰等问题,引入TREE-LSTM神经网络模型以实现复杂非线性系统动态数据分类。首先建立某船舶汽轮机组仿真模型,分析并进行故障仿真;随后进行数据预处理与特征工程;最后训练TREE-LSTM模型进行故障诊断,并与SVM、LSTM等模型进行比较。TREE-LSTM模型对于船舶汽轮机组变负荷过程的故障诊断正确率为98.7%,正确率最高。由于引入时间序列与复杂神经网络拓扑结构,TREE-LSTM在处理非线性系统动态数据分类问题时效果更好。
关键词
汽轮机组
动态仿真
故障诊断
树形长短时记忆网络
Keywords
steam turbine unit
dynamic simulation
fault diagnosis
tree long short-term memory network(TREE-LSTM)
分类号
TK269 [动力工程及工程热物理—动力机械及工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于TREE-LSTM算法的船舶汽轮机组变负荷故障诊断
王灏桐
李彦军
杨龙滨
史建新
《舰船科学技术》
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部