期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于主题模型加强的医疗活动表征学习方法
1
作者
徐啸
王灜
+1 位作者
金涛
王建民
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019年第3期169-177,共9页
随着健康医疗数据的快速积累,数据驱动的医疗分析越来越受重视,合适的医疗活动表征对这些分析至关重要。然而,当前大多数表征方法缺乏对医疗数据时序性、数值敏感性的考虑,影响了分析方法的效果和可解释性。该文针对住院病例,提出了一...
随着健康医疗数据的快速积累,数据驱动的医疗分析越来越受重视,合适的医疗活动表征对这些分析至关重要。然而,当前大多数表征方法缺乏对医疗数据时序性、数值敏感性的考虑,影响了分析方法的效果和可解释性。该文针对住院病例,提出了一种基于主题模型加强的医疗活动表征学习方法,该方法利用活动间时序关系和主题分配情况,构建了一个无监督学习的多层感知机模型。在大规模真实住院数据集上的测试结果表明:该方法所得表征可以有效提升疾病聚类、后续活动预测、剩余住院天数预测3项医疗分析任务的效果,同时表征具有良好的医学可解释性。
展开更多
关键词
表征学习
主题模型
多层感知机
医疗分析
原文传递
题名
基于主题模型加强的医疗活动表征学习方法
1
作者
徐啸
王灜
金涛
王建民
机构
清华大学软件学院
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019年第3期169-177,共9页
基金
国家自然科学基金资助项目(71690231)
文摘
随着健康医疗数据的快速积累,数据驱动的医疗分析越来越受重视,合适的医疗活动表征对这些分析至关重要。然而,当前大多数表征方法缺乏对医疗数据时序性、数值敏感性的考虑,影响了分析方法的效果和可解释性。该文针对住院病例,提出了一种基于主题模型加强的医疗活动表征学习方法,该方法利用活动间时序关系和主题分配情况,构建了一个无监督学习的多层感知机模型。在大规模真实住院数据集上的测试结果表明:该方法所得表征可以有效提升疾病聚类、后续活动预测、剩余住院天数预测3项医疗分析任务的效果,同时表征具有良好的医学可解释性。
关键词
表征学习
主题模型
多层感知机
医疗分析
Keywords
representation learning
topic modeling
multilayer perceptron
medical analyses
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
TP18 [自动化与计算机技术—控制理论与控制工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于主题模型加强的医疗活动表征学习方法
徐啸
王灜
金涛
王建民
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部