期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多注意力机制网络的调制识别算法
1
作者 王安义 王煜仪 《计算机工程与设计》 北大核心 2023年第2期328-334,共7页
针对小尺度衰落信道下调制信号识别率低的问题,提出一种基于多注意力机制网络的调制识别算法。提取信号瞬时幅度/相位特征与同相/正交序列构建双通道输入方式,实现多尺度感受野。通过残差密集块提取双通道数据的频域特征,将特征向量融... 针对小尺度衰落信道下调制信号识别率低的问题,提出一种基于多注意力机制网络的调制识别算法。提取信号瞬时幅度/相位特征与同相/正交序列构建双通道输入方式,实现多尺度感受野。通过残差密集块提取双通道数据的频域特征,将特征向量融合后送入双向门控循环单元提取时域信息,引入改进卷积注意力机制模块和软注意力机制捕捉信号的关键特征,构建多注意力机制网络对BPSK、QPSK、8PSK、16PSK、PAM4、GMSK、CPFSK、16QAM、64QAM这9种信号进行调制识别。仿真结果表明,信噪比大于10 dB时,9种信号平均识别率达89.2%以上,与其它深度学习算法相比具有更高的识别率,验证了该算法的有效性。 展开更多
关键词 调制识别 小尺度衰落信道 瞬时幅度/相位 双通道输入 残差密集块 双向门控循环单元 注意力机制
下载PDF
基于深度学习的井下信号调制识别研究 被引量:2
2
作者 王安义 王煜仪 李立 《煤炭技术》 CAS 北大核心 2022年第4期112-115,共4页
为识别矿井Nakagami-m衰落信道下的无线信号调制方式,研究了基于深度学习的端到端调制识别方法。首先对接收端IQ信号提取实部和虚部数据作为数据集,并搭建组合深度神经网络模型(CLDNN)对11种井下无线信号进行识别。仿真结果表明,当信噪... 为识别矿井Nakagami-m衰落信道下的无线信号调制方式,研究了基于深度学习的端到端调制识别方法。首先对接收端IQ信号提取实部和虚部数据作为数据集,并搭建组合深度神经网络模型(CLDNN)对11种井下无线信号进行识别。仿真结果表明,当信噪比(SNR)为0时,平均正确识别率为75.3%,当SNR为5 dB以上时,平均正确识别率可达到92.4%以上,相比于经典的深度学习调制识别方法,所提出的端到端深度神经网络模型可以更准确识别矿井无线信号。 展开更多
关键词 调制识别 NAKAGAMI-M衰落信道 深度学习 深度神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部