期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Physical information-enhanced graph neural network for predicting phase separation
1
作者 张亚强 王煦文 +1 位作者 王雅楠 郑文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期278-283,共6页
Although phase separation is a ubiquitous phenomenon, the interactions between multiple components make it difficult to accurately model and predict. In recent years, machine learning has been widely used in physics s... Although phase separation is a ubiquitous phenomenon, the interactions between multiple components make it difficult to accurately model and predict. In recent years, machine learning has been widely used in physics simulations. Here,we present a physical information-enhanced graph neural network(PIENet) to simulate and predict the evolution of phase separation. The accuracy of our model in predicting particle positions is improved by 40.3% and 51.77% compared with CNN and SVM respectively. Moreover, we design an order parameter based on local density to measure the evolution of phase separation and analyze the systematic changes with different repulsion coefficients and different Schmidt numbers.The results demonstrate that our model can achieve long-term accurate predictions of order parameters without requiring complex handcrafted features. These results prove that graph neural networks can become new tools and methods for predicting the structure and properties of complex physical systems. 展开更多
关键词 graph neural network phase separation machine learning dissipative particle dynamics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部