-
题名基于深度卷积神经网络的水下偏色图像增强方法
被引量:6
- 1
-
-
作者
傅博
王瑞子
王丽妍
张湘怡
-
机构
辽宁师范大学计算机与信息技术学院
-
出处
《吉林大学学报(理学版)》
CAS
北大核心
2021年第4期891-899,共9页
-
基金
国家自然科学基金(批准号:61702246)
中国博士后基金(批准号:2019M651123)
大连市高层次人才创新支持计划项目(批准号:2018RQ65).
-
文摘
针对水下图像在采集和传输过程中存在偏色、模糊等问题,提出一种基于深度卷积神经网络的水下偏色图像增强方法,并给出该方法的收敛性分析.首先,在传统U-Net模型的基础上,构建一种基于偏色图像的卷积神经网络模型,不断学习输入图像与输出图像的色彩偏差;其次,通过引用结构相似性的损失函数,使增强后的水下图像与输入的水下图像在内容结构细节上保持高度相似.该方法解决了水下图像偏色、失真的问题.通过对大量的真实水下数据集进行验证,并与其他算法进行对比实验,实验结果表明,用该方法增强后的水下图像不仅在视觉效果上得到了有效提高,同时也保留了原始影像中蕴含的纹理结构,证明该模型在水下图像增强领域实用性较强.
-
关键词
水下图像优化
图像色彩增强
卷积神经网络
结构相似性
-
Keywords
underwater image optimization
image color enhancement
convolutional neural network
structural similarity
-
分类号
TP391
[自动化与计算机技术—计算机应用技术]
-
-
题名边缘导向的非局部均值图像滤波
被引量:7
- 2
-
-
作者
傅博
吴越楚
王丽妍
王瑞子
-
机构
辽宁师范大学计算机与信息技术学院
-
出处
《吉林大学学报(信息科学版)》
CAS
2020年第6期687-693,共7页
-
基金
国家自然科学基金资助项目(61702246)
中国博士后基金资助项目(2019M651123)
大连市高层次人才创新支持计划(青年科技之星)基金资助项目(2018RQ65)。
-
文摘
传统去噪方法在处理高强度噪声干扰图像时,往往不能有效去除噪声且在修复过程容易引入二次污染。为此,提出一种边缘图导向的非局部图像均值滤波算法。首先获取二阶差分边缘信息,在非局部范围内搜索相似块,以边缘导向图与噪声图像共同生成滤波器权值,进而构建由边缘信息导向的非局部协同滤波框架。与传统滤波为代表的局部线性滤波方法相比,所提出算法能挖掘图像边缘信息并利用一种新的非局部协同滤波框架进行图像去噪,因此增强了高强度噪声干扰环境下的边缘修复能力。实验证明,提出算法在高强度噪声污染的情况下,修复的图像不仅获得了更高的测量指标,视觉效果也更加理想。
-
关键词
边缘导向图
非局部均值
图像去噪
高强度噪声
-
Keywords
edge guided image
non-local means
image denoising
high intensity noise
-
分类号
TN911.73
[电子电信—通信与信息系统]
-