期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多尺度注意力机制相位展开的三维人脸建模 被引量:8
1
作者 朱江平 王睿珂 +3 位作者 段智涓 黄怡洁 何国欢 周佩 《光学学报》 EI CAS CSCD 北大核心 2022年第1期155-166,共12页
相位展开作为三维(3D)测量技术中的关键环节,其解析精度直接影响3D建模的精度。由于存在欠采样和相位不连续等问题,故传统空间相位展开难以得到正确的相位信息,而时间相位展开又需要额外的信息辅助。针对复杂场景中的3D人脸建模,提出了... 相位展开作为三维(3D)测量技术中的关键环节,其解析精度直接影响3D建模的精度。由于存在欠采样和相位不连续等问题,故传统空间相位展开难以得到正确的相位信息,而时间相位展开又需要额外的信息辅助。针对复杂场景中的3D人脸建模,提出了基于多尺度注意力机制的相位展开网络。在所提网络中,利用编码器-解码器结构融合多尺度特征,并在解码网络中嵌入注意力子网络以获取上下文信息。构建一个包含5000组样本的FACE数据集和一个包含100组样本的MASK数据集,每组样本均包含截断相位和连续相位的真值,这些真值可用于相位展开的训练及测试。所提网络在FACE数据集和MASK数据集上的均方根误差分别为0.0387 rad和0.0273 rad,结构相似性分别为0.9850和0.9793。在欠采样、相位不连续等区域中,所提网络可快速准确地提取相位特征,进而保证了相位展开的正确性。最后,通过对比实验证实了所提网络的有效性和可行性。 展开更多
关键词 测量 三维人脸建模 相位展开 多尺度注意力机制融合 上下文特征信息 编码器-解码器结构
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部