Twisting two layers into a magic angle(MA) of ~1.1°is found essential to create low energy flat bands and the resulting correlated insulating,superconducting,and magnetic phases in twisted bilayer graphene(TBG).W...Twisting two layers into a magic angle(MA) of ~1.1°is found essential to create low energy flat bands and the resulting correlated insulating,superconducting,and magnetic phases in twisted bilayer graphene(TBG).While most of previous works focus on revealing these emergent states in MA-TBG,a study of the twist angle dependence,which helps to map an evolution of these phases,is yet less explored.Here,we report a magnetotransport study on one non-magic angle TBG device,whose twist angle θ changes from 1.25° at one end to 1.43°at the other.For θ=1.25° we observe an emergence of topological insulating states at hole side with a sequence of Chern number |C|=4-|v|,where v is the number of electrons(holes) in moire unite cell.When θ> 1.25°,the Chern insulator from flat band disappears and evolves into fractal Hofstadter butterfly quantum Hall insulator where magnetic flux in one moire unite cell matters.Our observations will stimulate further theoretical and experimental investigations on the relationship between electron interactions and non-trivial band topology.展开更多
Synapse emulation is very important for realizing neuromorphic computing, which could overcome the energy and throughput limitations of today's computing architectures. Memristors have been extensively studied for...Synapse emulation is very important for realizing neuromorphic computing, which could overcome the energy and throughput limitations of today's computing architectures. Memristors have been extensively studied for using in nonvolatile memory storage and neuromorphic computing. In this paper, we report the fabrication of vertical sandwiched memristor device using ultrathin quasi-two-dimensional gallium oxide produced by squeegee method. The as-fabricated two-terminal memristor device exhibited the essential functions of biological synapses, such as depression and potentiation of synaptic weight, transition from short time memory to long time memory, spike-timing-dependent plasticity, and spike-rate-dependent plasticity. The synaptic weight of the memristor could be tuned by the applied voltage pulse, number,width, and frequency. We believe that the injection of the top Ag cations should play a significant role for the memristor phenomenon. The ultrathin of medium layer represents an advance to integration in vertical direction for future applications and our results provide an alternative way to fabricate synaptic devices.展开更多
基金National Key R&D program(Grant No.2020YFA0309604)the National Natural Science Foundation of China(Grant Nos.61888102,11834017,and 12074413)+7 种基金the Strategic Priority Research Program of CAS(Grant Nos.XDB30000000 and XDB33000000)the Key-Area Research and Development Program of Guangdong Province(Grant No.2020B0101340001)Research Program of Beijing Academy of Quantum Information Sciences(Grant No.Y18G11)the start-up grant of ShanghaiTech UniversityNational Key R&D Program(Grant No.2020YFA0309601)Elemental Strategy Initiative conducted by the MEXT,Japan(Grant No.JPMXP0112101001)JSPS KAKENHI(Grant No.JP20H00354)CREST(JPMJCR15F3),JST。
文摘Twisting two layers into a magic angle(MA) of ~1.1°is found essential to create low energy flat bands and the resulting correlated insulating,superconducting,and magnetic phases in twisted bilayer graphene(TBG).While most of previous works focus on revealing these emergent states in MA-TBG,a study of the twist angle dependence,which helps to map an evolution of these phases,is yet less explored.Here,we report a magnetotransport study on one non-magic angle TBG device,whose twist angle θ changes from 1.25° at one end to 1.43°at the other.For θ=1.25° we observe an emergence of topological insulating states at hole side with a sequence of Chern number |C|=4-|v|,where v is the number of electrons(holes) in moire unite cell.When θ> 1.25°,the Chern insulator from flat band disappears and evolves into fractal Hofstadter butterfly quantum Hall insulator where magnetic flux in one moire unite cell matters.Our observations will stimulate further theoretical and experimental investigations on the relationship between electron interactions and non-trivial band topology.
基金the National Natural Science Foundation of China(Grant No.11834017)the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)(Grant No.XDB30000000)+2 种基金the Key Research Program of Frontier Sciences of the CAS(Grant No.QYZDB-SSW-SLH004)the National Key R&D Program of China(Grant No.2016YFA0300904)the Fundamental Research Funds for the Central Universities,China(Grant No.310421101)
文摘Synapse emulation is very important for realizing neuromorphic computing, which could overcome the energy and throughput limitations of today's computing architectures. Memristors have been extensively studied for using in nonvolatile memory storage and neuromorphic computing. In this paper, we report the fabrication of vertical sandwiched memristor device using ultrathin quasi-two-dimensional gallium oxide produced by squeegee method. The as-fabricated two-terminal memristor device exhibited the essential functions of biological synapses, such as depression and potentiation of synaptic weight, transition from short time memory to long time memory, spike-timing-dependent plasticity, and spike-rate-dependent plasticity. The synaptic weight of the memristor could be tuned by the applied voltage pulse, number,width, and frequency. We believe that the injection of the top Ag cations should play a significant role for the memristor phenomenon. The ultrathin of medium layer represents an advance to integration in vertical direction for future applications and our results provide an alternative way to fabricate synaptic devices.