It is assumed that the storm wave takes place once a year during the design period, and Nhistories of storm waves are generated on the basis of wave spectrum corresponding to the N-year design period. The responses of...It is assumed that the storm wave takes place once a year during the design period, and Nhistories of storm waves are generated on the basis of wave spectrum corresponding to the N-year design period. The responses of the breakwater to the N histories of storm waves in the N-year design period are calculated by mass-spring-dashpot mode and taken as a set of samples. The failure probability of caisson breakwaters during the design period of N years is obtained by the statistical analysis of many sets of samples. It is the key issue to improve the efficiency of the common Monte Carlo simulation method in the failure probability estimation of caisson breakwaters in the complete life cycle. In this paper, the kernel method of importance sampling, which can greatly increase the efficiency of failure probability calculation of caisson breakwaters, is proposed to estimate the failure probability of caisson breakwaters in the complete life cycle. The effectiveness of the kernel method is investigated by an example. It is indicated that the calculation efficiency of the kernel method is over 10 times the common Monte Carlo simulation method.展开更多
In the dynamic stability analysis of a caisson breakwater, most of current studies pay attention to the motion characteristics of caisson breakwaters under a single periodical breaking wave excitation. And in the life...In the dynamic stability analysis of a caisson breakwater, most of current studies pay attention to the motion characteristics of caisson breakwaters under a single periodical breaking wave excitation. And in the lifetime stability analysis of caisson breakwater, it is assumed that the caisson breakwater suffers storm wave excitation once annually in the design lifetime. However, the number of annual severe storm occurrence is a random variable. In this paper, a series of random waves are generated by the Wen Sheng-chang wave spectrum, and the histories of successive and long-term random wave forces are built up by using the improved Goda wave force model. It is assumed that the number of annual severe storm occurrence is in the Poisson distribution over the 50-year design lifetime, and the history of random wave excitation is generated for each storm by the wave spectrum. The response histories of the caisson breakwater to the random waves over 50-year design lifetime are calculated and taken as a set of samples. On the basis of the Monte Carlo simulation technique, a large number of samples can be obtained, and the probability assessment of the safety of the breakwater during the complete design lifetime is obtained by statistical analysis of a large number of samples. Finally, the procedure of probability assessment of the breakwater safety is illustrated by an example.展开更多
A caisson breakwater is built on soft foundations after replacing the upper soft layer with sand. This paper presents a dynamic finite element method to investigate the strength degradation and associated pore pressur...A caisson breakwater is built on soft foundations after replacing the upper soft layer with sand. This paper presents a dynamic finite element method to investigate the strength degradation and associated pore pressure development of the intercalated soft layer under wave cyclic loading. By combining the undrained shear strength with the empirical formula of overconsolidation clay produced by unloading and the development model of pore pressure, the dynamic degradation law that describes the undrained shear strength as a function of cycle number and stress level is derived. Based on the proposed dynamic degradation law and M-C yield criterion, a dynamic finite element method is numerically implemented to predict changes in undrained shear strength of the intercalated soft layer by using the general-purpose FEM software ABAQUS, and the accuracy of the method is verified. The effects of cycle number and amplitude of the wave force on the degradation of the undrained shear strength of the intercalated soft layer and the associated excess pore pressure response are investigated by analyzing an overall distribution and three typical sections underneath the breakwater. By comparing the undrained shear strength distributions obtained by the static method and the quasi-static method with the undrained shear strength distributions obtained by the dynamic finite element method in the three typical sections, the superiority of the dynamic finite element method in predicting changes in undrained shear strength is demonstrated.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51279128)the Innovative Research Groups Science Foundation of China(Grant No.51321065)the Construction Science and Technology Project of Ministry of Transport of the People's Republic of China(Grant No.2013328224070)
文摘It is assumed that the storm wave takes place once a year during the design period, and Nhistories of storm waves are generated on the basis of wave spectrum corresponding to the N-year design period. The responses of the breakwater to the N histories of storm waves in the N-year design period are calculated by mass-spring-dashpot mode and taken as a set of samples. The failure probability of caisson breakwaters during the design period of N years is obtained by the statistical analysis of many sets of samples. It is the key issue to improve the efficiency of the common Monte Carlo simulation method in the failure probability estimation of caisson breakwaters in the complete life cycle. In this paper, the kernel method of importance sampling, which can greatly increase the efficiency of failure probability calculation of caisson breakwaters, is proposed to estimate the failure probability of caisson breakwaters in the complete life cycle. The effectiveness of the kernel method is investigated by an example. It is indicated that the calculation efficiency of the kernel method is over 10 times the common Monte Carlo simulation method.
基金financially supported by the National Natural Science Foundation of China(Grant No.51279128)the Innovative Research Group Science Foundation(Grant No.51321065)the Construction Science and Technology Project of Ministry of Transport of the People’s Republic of China(Grant No.2013328224070)
文摘In the dynamic stability analysis of a caisson breakwater, most of current studies pay attention to the motion characteristics of caisson breakwaters under a single periodical breaking wave excitation. And in the lifetime stability analysis of caisson breakwater, it is assumed that the caisson breakwater suffers storm wave excitation once annually in the design lifetime. However, the number of annual severe storm occurrence is a random variable. In this paper, a series of random waves are generated by the Wen Sheng-chang wave spectrum, and the histories of successive and long-term random wave forces are built up by using the improved Goda wave force model. It is assumed that the number of annual severe storm occurrence is in the Poisson distribution over the 50-year design lifetime, and the history of random wave excitation is generated for each storm by the wave spectrum. The response histories of the caisson breakwater to the random waves over 50-year design lifetime are calculated and taken as a set of samples. On the basis of the Monte Carlo simulation technique, a large number of samples can be obtained, and the probability assessment of the safety of the breakwater during the complete design lifetime is obtained by statistical analysis of a large number of samples. Finally, the procedure of probability assessment of the breakwater safety is illustrated by an example.
基金financially supported by the National Natural Science Foundation of China(Grant No.51279128)the National Natural Science Fund for Innovative Research Groups Science Foundation(Grant No.51321065)the Construction Science and Technology Project of Ministry of Transport of the People’s Republic of China(Grant No.2013328224070)
文摘A caisson breakwater is built on soft foundations after replacing the upper soft layer with sand. This paper presents a dynamic finite element method to investigate the strength degradation and associated pore pressure development of the intercalated soft layer under wave cyclic loading. By combining the undrained shear strength with the empirical formula of overconsolidation clay produced by unloading and the development model of pore pressure, the dynamic degradation law that describes the undrained shear strength as a function of cycle number and stress level is derived. Based on the proposed dynamic degradation law and M-C yield criterion, a dynamic finite element method is numerically implemented to predict changes in undrained shear strength of the intercalated soft layer by using the general-purpose FEM software ABAQUS, and the accuracy of the method is verified. The effects of cycle number and amplitude of the wave force on the degradation of the undrained shear strength of the intercalated soft layer and the associated excess pore pressure response are investigated by analyzing an overall distribution and three typical sections underneath the breakwater. By comparing the undrained shear strength distributions obtained by the static method and the quasi-static method with the undrained shear strength distributions obtained by the dynamic finite element method in the three typical sections, the superiority of the dynamic finite element method in predicting changes in undrained shear strength is demonstrated.