期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于UMATHT子程序的玻璃纤维/乙烯基酯热响应数值模拟 被引量:2
1
作者 冯振宇 范保鑫 +3 位作者 王纳斯丹 韩雪飞 李翰 吴敬涛 《材料导报》 EI CAS CSCD 北大核心 2021年第2期2191-2198,共8页
针对玻璃纤维/乙烯基酯树脂复合材料在火灾环境中的热响应问题,考虑材料的热传导、分解气体扩散以及分解反应吸热,基于UMATHT与USDFLD子程序建立复合材料热响应模型,开展有限元计算与分析。结果表明:建立的复合材料热响应模型可以合理... 针对玻璃纤维/乙烯基酯树脂复合材料在火灾环境中的热响应问题,考虑材料的热传导、分解气体扩散以及分解反应吸热,基于UMATHT与USDFLD子程序建立复合材料热响应模型,开展有限元计算与分析。结果表明:建立的复合材料热响应模型可以合理预报单侧辐射热流作用下玻璃纤维/乙烯基酯树脂层合板的热响应,50 kW/m 2热流下,加热结束时材料表面和背部温度分别为615.89℃和412.55℃;随着加热时间的延长,材料温度持续升高,厚度方向上的材料温度由非线性分布逐渐趋近于线性分布;随着材料深度的增加,材料完成热解反应所需要的时间越长,材料的热分解速率峰值越低,达到热分解速率峰值的时刻越晚,热解反应越慢;同一温度下,随着材料深度的减小,处于热解状态下的材料热分解率越低,热分解速率峰值越高,材料达到热分解速率峰值时的温度越高。 展开更多
关键词 热响应 玻璃纤维/乙烯基酯 热分解 UMATHT子程序 有限元
下载PDF
碳纤维环氧树脂复合材料热响应预报方法 被引量:7
2
作者 李翰 樊茂华 +2 位作者 王纳斯丹 范保鑫 冯振宇 《材料工程》 EI CAS CSCD 北大核心 2020年第5期49-55,共7页
为研究碳纤维环氧树脂复合材料在火灾环境下的热响应,考虑其在火灾环境下的热解过程,建立非线性热响应方程组,利用有限差分法计算分析单侧热流作用下的材料内部温度-时间历程与炭化规律。结果表明:建立的热响应方程组可以有效预测碳纤... 为研究碳纤维环氧树脂复合材料在火灾环境下的热响应,考虑其在火灾环境下的热解过程,建立非线性热响应方程组,利用有限差分法计算分析单侧热流作用下的材料内部温度-时间历程与炭化规律。结果表明:建立的热响应方程组可以有效预测碳纤维环氧树脂的温度-时间历程,与实验值吻合较好;随着加热时间延长,炭化层范围逐渐扩大,温度趋于稳定,材料温度-深度分布由非线性转变为线性;随着深度增加,碳纤维环氧树脂复合材料温升速率减小,达到热解所需的时间更长,炭化过程变慢,且单位温度的密度变化量峰值随深度增加向低温方向移动;热解反应区中不同深度位置的材料剩余质量分数在同一温度下不同,深度越大剩余质量分数越小,炭化程度越高。 展开更多
关键词 碳纤维/环氧树脂 热响应 炭化 热分解
下载PDF
阻燃改性玻璃纤维环氧树脂的热响应预报方法 被引量:2
3
作者 冯振宇 樊茂华 +2 位作者 范保鑫 王纳斯丹 李翰 《玻璃钢/复合材料》 CAS 北大核心 2019年第9期32-37,共6页
为研究阻燃改性玻璃纤维环氧树脂复合材料在火灾环境下的热响应,考虑其在火灾环境下的热解过程,建立了热响应方程组,利用有限差分法计算分析单侧热流作用下的材料内部温度-时间历程与碳化规律。研究结果表明:建立的非线性热响应方程组... 为研究阻燃改性玻璃纤维环氧树脂复合材料在火灾环境下的热响应,考虑其在火灾环境下的热解过程,建立了热响应方程组,利用有限差分法计算分析单侧热流作用下的材料内部温度-时间历程与碳化规律。研究结果表明:建立的非线性热响应方程组可以有效预测玻璃纤维环氧树脂的温度-时间历程,与实验值吻合较好;阻燃改性玻璃纤维环氧树脂在相同热流工况下,材料内部温度略低于未改性材料;随着深度增加,阻燃改性玻璃纤维环氧树脂达到热解所需的时间更长,碳化过程变慢;热解反应区中不同深度位置的材料剩余质量分数在同一温度下不同,位置越深剩余质量分数越小,碳化程度越高。 展开更多
关键词 玻璃纤维环氧树脂 热响应 阻燃 碳化 有限差分法
下载PDF
玻璃纤维乙烯基酯树脂复合材料的热响应预报方法 被引量:1
4
作者 冯振宇 王纳斯丹 +2 位作者 樊茂华 范保鑫 李翰 《玻璃钢/复合材料》 CAS 北大核心 2019年第11期24-29,共6页
为研究玻璃纤维/乙烯基酯树脂复合材料在火灾环境下的热响应,考虑其热解过程,建立了热响应方程组,利用有限差分法计算分析单侧热流作用下的材料内部温度-时间历程与碳化过程。研究结果表明:建立的非线性热响应方程组可有效预测玻璃纤维... 为研究玻璃纤维/乙烯基酯树脂复合材料在火灾环境下的热响应,考虑其热解过程,建立了热响应方程组,利用有限差分法计算分析单侧热流作用下的材料内部温度-时间历程与碳化过程。研究结果表明:建立的非线性热响应方程组可有效预测玻璃纤维/乙烯基酯树脂复合材料的温度-时间历程,与实验值吻合较好;随着加热时间增加,材料完全碳化,温度趋于稳定,材料温度-深度分布由非线性转变为线性;随着深度增加,玻璃纤维/乙烯基酯树脂复合材料达到热解所需的时间更长,碳化过程变慢;热解反应区中不同深度位置的材料剩余质量分数在同一温度下不同,位置越深剩余质量分数越小,碳化程度越高。 展开更多
关键词 玻璃纤维/乙烯基酯树脂 热响应 碳化 热分解
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部