期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多微云协作的计算任务卸载 被引量:1
1
作者 庆永 毛莺池 +1 位作者 王绎超 龙宝 《计算机应用》 CSCD 北大核心 2020年第2期328-334,共7页
针对多微云计算模式下计算任务卸载过程复杂、任务响应时间长的问题,构建面向多微云协作的计算任务卸载模型,并提出加权自适应惯性权重的粒子群优化(WAIW-PSO)算法,快速求解最优卸载策略。首先,对移动终端-微云-远程云的任务执行过程进... 针对多微云计算模式下计算任务卸载过程复杂、任务响应时间长的问题,构建面向多微云协作的计算任务卸载模型,并提出加权自适应惯性权重的粒子群优化(WAIW-PSO)算法,快速求解最优卸载策略。首先,对移动终端-微云-远程云的任务执行过程进行建模;其次,考虑多用户对计算资源的竞争,构建基于多微云协作的任务卸载模型;最后,针对求解最佳任务卸载策略复杂度过高的情况,提出WAIW-PSO算法求解卸载问题。仿真实验结果表明,与标准粒子群优化(PSO)算法以及基于高斯函数递减惯性权重的粒子群优化(GDIWPSO)算法相比,WAIW-PSO算法可以根据进化代数和个体适应度综合调整惯性权重,寻优能力较强,求解最优卸载策略的时间最短;在不同设备数、任务数等情况下选择不同任务卸载策略进行对比实验的结果表明,基于WAIW-PSO算法的卸载策略可以明显缩短任务总完成时间。 展开更多
关键词 移动云计算 微云 任务卸载 多微云协作 粒子群优化
下载PDF
基于激活-熵的分层迭代剪枝策略的CNN模型压缩 被引量:2
2
作者 陈程军 毛莺池 王绎超 《计算机应用》 CSCD 北大核心 2020年第5期1260-1265,共6页
针对卷积神经网络(CNN)模型现有剪枝策略各尽不同和效果一般的情况,提出了基于激活-熵的分层迭代剪枝(AE-LIP)策略,保证模型精度在可控范围内的同时缩减模型的参数量。首先,结合神经元激活值和信息熵,构建基于激活-熵的权重评判准则,计... 针对卷积神经网络(CNN)模型现有剪枝策略各尽不同和效果一般的情况,提出了基于激活-熵的分层迭代剪枝(AE-LIP)策略,保证模型精度在可控范围内的同时缩减模型的参数量。首先,结合神经元激活值和信息熵,构建基于激活-熵的权重评判准则,计算权值重要性得分;然后,逐层剪枝,根据重要性得分对权值排序,并结合各层剪枝数量筛选出待剪枝权重并将其设置为0;最后,微调模型,重复上述过程,直至迭代结束。实验结果表明,采用基于激活-熵的分层迭代剪枝策略:AlexNet模型压缩了87.5%;相应的准确率下降了2.12个百分点,比采用基于幅度的权重剪枝策略提高了1.54个百分点,比采用基于相关性的权重剪枝策略提高0.91个百分点。VGG-16模型压缩了84.1%;相应的准确率下降了2.62个百分点,比采用上述两个对比策略分别提高了0.62个百分点和0.27个百分点。说明所提策略在保证模型精确度下有效缩减了CNN模型的大小,有助于CNN模型在存储受限的移动设备上的部署。 展开更多
关键词 移动云计算 神经元激活值 信息熵 迭代剪枝 模型压缩
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部