介绍了延时线在雷达中的工作原理,分析了延迟时间误差与延迟幅度误差对信号合成的影响。针对驱动延时组件小型化、高精度设计的难点进行了评估,并提出采用微波多层印制电路实现小型化、采用新型调相电路与衰减电路解决延时高精度的设计...介绍了延时线在雷达中的工作原理,分析了延迟时间误差与延迟幅度误差对信号合成的影响。针对驱动延时组件小型化、高精度设计的难点进行了评估,并提出采用微波多层印制电路实现小型化、采用新型调相电路与衰减电路解决延时高精度的设计方案。在此基础上,设计并实现了一种集成延时、放大与功率分配/合成功能的驱动延时组件。根据驱动延时组件各态收发指标测试结果,幅度带内平坦度优于±0.4 d B,延时相位精度≤±5°,延时幅度精度≤±0.5 d B。展开更多
文摘介绍了延时线在雷达中的工作原理,分析了延迟时间误差与延迟幅度误差对信号合成的影响。针对驱动延时组件小型化、高精度设计的难点进行了评估,并提出采用微波多层印制电路实现小型化、采用新型调相电路与衰减电路解决延时高精度的设计方案。在此基础上,设计并实现了一种集成延时、放大与功率分配/合成功能的驱动延时组件。根据驱动延时组件各态收发指标测试结果,幅度带内平坦度优于±0.4 d B,延时相位精度≤±5°,延时幅度精度≤±0.5 d B。