期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于混合频繁模式树的粗糙集属性约减算法的研究与应用 被引量:4
1
作者 林春喜 徐宏喆 +1 位作者 王谊青 李文 《计算机应用研究》 CSCD 北大核心 2018年第4期988-991,1027,共5页
粗糙集对于学习分析系统的属性约减模型有着重要的研究意义和使用价值。针对教育大数据高维度、不完备、增量性等现状,提出了基于不完备决策表的差别信息增量更新算法,并结合树型结构对差别信息的高效存储和粗糙集的核属性概念,设计构建... 粗糙集对于学习分析系统的属性约减模型有着重要的研究意义和使用价值。针对教育大数据高维度、不完备、增量性等现状,提出了基于不完备决策表的差别信息增量更新算法,并结合树型结构对差别信息的高效存储和粗糙集的核属性概念,设计构建了MIX_FP树,实现高维属性的有效约减。实验结果验证了该算法具有较好的运行效率和空间性能,为教育大数据的属性约减提供了有效的方法,同时为基于粗糙集理论的属性约减算法研究及其在学习分析领域的应用提供了新的研究思路。 展开更多
关键词 属性约减 粗糙集 差别信息 MIX_FP树 学习分析技术
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部