定子槽漏感是定子无轭模块化(yokeless and segmented,YASA)轴向磁通永磁电机电感的主要分量,会降低电机的功率因数和最大输出转矩。该文提出定子槽内微小单元磁场能量法计算YASA电机的定子槽漏感,通过建立计及铁心饱和影响的二维等效...定子槽漏感是定子无轭模块化(yokeless and segmented,YASA)轴向磁通永磁电机电感的主要分量,会降低电机的功率因数和最大输出转矩。该文提出定子槽内微小单元磁场能量法计算YASA电机的定子槽漏感,通过建立计及铁心饱和影响的二维等效磁网络模型准确计算槽内微小单元储存的磁场能量,进而计算定子槽漏感。基于所提出的方法,进一步研究定子结构参数以及极槽配合对YASA电机定子槽漏感的影响规律。有限元仿真和实验结果表明,该文所提出的YASA电机定子槽漏感计算方法的可行性和准确性。展开更多
文摘以圆形截面桩为例,基于修正后的Loganathan公式,利用文克尔弹性地基梁模型、m法计算理论和荷载传递法,建立盾构隧道近接斜交侧穿既有桥梁桩基的变形计算方法.通过现场监测结果验证计算方法的工程适用性,并利用该方法分析侧穿桥梁桩基施工引起桩身水平挠曲变形的主要影响因素.结果表明:桩身水平位移和桩顶竖向位移的理论计算结果与监测结果之间的最大误差分别不超过14.6%和2.7%.与现有方法相比,所提方法的计算结果更接近实测值.入土段桩身水平挠曲程度与隧道轴心和桩基中心轴线之间的水平距离、隧道侧穿斜交角呈负相关;最大水平挠曲位移与隧道侧穿斜交角呈负相关.当水平侧穿距离为6.0 m时,最大水平挠曲变形为7.4 mm;当隧道盾构侧穿斜交角为70.0°时,入土段桩身最大水平挠曲位移为15.4 mm.
文摘定子槽漏感是定子无轭模块化(yokeless and segmented,YASA)轴向磁通永磁电机电感的主要分量,会降低电机的功率因数和最大输出转矩。该文提出定子槽内微小单元磁场能量法计算YASA电机的定子槽漏感,通过建立计及铁心饱和影响的二维等效磁网络模型准确计算槽内微小单元储存的磁场能量,进而计算定子槽漏感。基于所提出的方法,进一步研究定子结构参数以及极槽配合对YASA电机定子槽漏感的影响规律。有限元仿真和实验结果表明,该文所提出的YASA电机定子槽漏感计算方法的可行性和准确性。