At the ambient temperature and pressure a glow discharge plasma was used as a new approach for the coupling of methane with the newly-developed rotary multidentate helix electrode. In the presence of hydrogen, the eff...At the ambient temperature and pressure a glow discharge plasma was used as a new approach for the coupling of methane with the newly-developed rotary multidentate helix electrode. In the presence of hydrogen, the effects of the input peak voltages and gas flow rates on methane conversion, C2 single pass yield and selectivity were investigated, and then the results were compared with those from the three-disc multidentate electrode. This demonstrated, on an experimental scale, that the rotary multidentate helix electrode was better than the multidentate three-disc electrode as there was little accumulation of coke, and the C2 yield per pass was 69.85% and C2 selectivity over 99.14% with 70.46% methane conversion at an input peak voltage of 2300 V and 60 ml/min gas flow rate.展开更多
基金supported by National Natural Science Foundation of China (No. 50177002)
文摘At the ambient temperature and pressure a glow discharge plasma was used as a new approach for the coupling of methane with the newly-developed rotary multidentate helix electrode. In the presence of hydrogen, the effects of the input peak voltages and gas flow rates on methane conversion, C2 single pass yield and selectivity were investigated, and then the results were compared with those from the three-disc multidentate electrode. This demonstrated, on an experimental scale, that the rotary multidentate helix electrode was better than the multidentate three-disc electrode as there was little accumulation of coke, and the C2 yield per pass was 69.85% and C2 selectivity over 99.14% with 70.46% methane conversion at an input peak voltage of 2300 V and 60 ml/min gas flow rate.